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0. Introduction

Let M be a compact oriented Riemannian manifold of dimension 7,
and let S be a Hermitian vector bundle over M. Let D: C*(M, S) —
C™(M, S) be a first-order elliptic differential operator on M which is
formally selfadjoint with respect to the natural inner product defined by
the fibre metric of S and the metric of M . For the moment suppose that
M has no boundary. Then D is essentially selfadjoint in L2(M , S,
and the eta invariant is a nonlocal spectral invariant of D, which was
introduced by Atiyah, Patodi, and Singer [1]. Let us recall the definition
of the invariant. Let A ; Tun over the eigenvalues of D. Then the eta
function of D is defined as
0.1) (s, D) =3 ffgllﬁ  Re(s) > .

A#0 17

The series is absolutely convergent in the half-plane Re(s) > # and admits
a meromorphic continuation to the whole complex plane. The analytic
continuation is based on the following alternative expression for the eta
function

I'((s+1)/2)

It is a nontrivial result that #n(s, D) is regular at s = 0 [3], [13]. Then the
eta invariant is defined to be 7(0, D). The eta invariant is a measure of
the spectral asymmetry of D . It arises naturally as the boundary correction
term in the index theorem for manifolds with boundary proved by Atiyah,
Patodi, and Singer [1]. We note that this index theorem can be recovered
in many different ways. For example, one may glue a half-cylinder or a
cone to the boundary of the manifold in question and work in the L
setting [7], [22], [23]. This means that the spectral boundary conditions

(0.2) n(s, D) = 1 / t(s—l)/zTr(De_tDz)dt.
0
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used in [1] are replaced by the L*-conditions. It turns out that the L’-
index of the naturally extended operator is closely related to the index of
the original boundary value problem.

In this paper we shall study eta invariants for manifolds with boundary.
Thus, we assume that M has a nonempty boundary Y . There are various
possibilities to define eta invariants for manifolds with boundary. One way
is to introduce boundary conditions. In [14], Gilkey and Smith have stud-
ied eta invariants for a certain restricted class of elliptic boundary value
problems. The associated closed extensions are, in general, nonselfadjoint.
For first order operators, however, there exists a natural choice of bound-
ary conditions which gives rise to a selfadjoint extension. These are the
spectral boundary conditions of [1]. For compatible Dirac-type operators
this approach was used [11].

Instead of imposing boundary conditions one may, for example, glue
a cone or a half-cylinder to the boundary of A , and consider the cor-
responding eta invariant in the Lz-setting. This may be also viewed as
a global boundary condition. Eta invariants for manifolds with conical
singularities were studied by Cheeger [7], [8] for the operator associated to
the signature operator and by Bismut and Cheeger [5] for Dirac operators.
In this paper, we shall consider the case where a half-cylinder is attached
to the boundary.

We suppose that the Riemannian metric of M is a product in a neigh-
borhood I x Y of the boundary. Furthermore, we assume that, in this
neighborhood, D takes the form

(0.3) - D=y(8/ou+ A),

where y and A satisfy conditions (1.2), (1.3). In particular, 4 is sym-
metric. Then we introduce spectral boundary conditions as in [1], and use
the negative spectral projection II_ of 4. If Kerd # {0}, the corre-
sponding extension of D is not selfadjoint. In this case we proceed as in
[11, p. 162] and pick a unitary involution o: Ker4 — KerA4 such that
oy = —yo . Under the given assumptions, such an involution always exists.
Let P_ denote the orthogonal projection onto Ker(g + Id). The bound-
ary conditions are then defined by (II_ +P_)(¢|Y) =0, ¢ € C7(M, S).
The associated closed extension D, is selfadjoint and has pure point spec-
trum. A similar phenomena occurs also in the case of conical singularities
[71, [8]. One has to impose ideal boundary conditions which correspond
exactly to the choice of a Lagrangian subspace of Ker 4. In this context,
Cheeger was the first to consider these types of boundary conditions.
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In §1 we study more closely the spectrum of D_, which has essentially
the same formal properties as the spectrum of D on a closed manifold. In
particular, Weyl’s law holds for the counting function of the eigenvalues
A ; of D_, that is,

VOI(M ) n
A

(47)"*T(n/2 + 1)

as A — oo (Corollary 1.22). This enables us to introduce the eta func-
tion 7n(s, D) by the same formula (0.1). The study of the heat equation
implies in the same way as in the closed case that #(s, D) has a meromor-
phic continuation to the whole complex plane. The case of a compatible
Dirac type operator (cf. §1 for the definition) was treated in [11]. In this
case 7(s, D) is regular in the half-plane Re(s) > —1. In particular, the
eta invariant of D_ is given by

#{}“jl MJ{ < }“} ~

0o 2
7(0,D,) = Lﬂ / 2 Te(D e~ dt.
0

The question of regularity of #(s, D) at s = 0 is not completely an-
swered in this paper. In §2 we study the behavior of the eta invariant
under variations which stay constant near the boundary. It follows that,
for such variations, the residue is a homotopy invariant. This implies, in
particular, that #n(s, D) is regular at s = 0 for all Dirac-type operators.
We also investigate the dependence of the eta invariant on the choice of
the unitary involution ¢ . If g;,, g, are two unitary involutions of Ker A4
anticommuting with y, then we show in Theorem 2.21 that

n(0, Da,) - (0, Dao) = —% logdet(g,o,| Ker(y — i)) modZ.

This result was proved independently by Lesch and Wojciechowski [21].
In analogy with the closed case one may expect that eta invariants for
manifolds with boundary shall arise as boundary correction terms in an
index theorem for manifolds with corners. We do not know yet if there
exists an appropriate boundary value problem for a manifold with corners
generalizing the APS (i.e., Atiyah-Patodi-Singer) boundary conditions in
-the case of a smooth boundary. One may, however, use the L? approach
to derive such an index formula. For this purpose we need to study eta
invariants within the Z’-framework. This means that we enlarge M by
gluing the half-cylinder R* x Y to the boundary Y of M. If we equip
R* x Y with the product metric, then the resulting manifold Z becomes a
complete Riemannian manifold. The operator D has a natural extension
to Z, and its closure in L* will be denoted by & . It is easy to see that
T is selfadjoint. Since & has a nontrivial continuous spectrum, the eta
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invariant of & cannot be defined in the same way as for D . Instead

we consider the kernel E(x, y,t) of & exp—tZ 2 In §3 we study this
kernel and prove that trE(x, x, ¢) is absolutely integrable on Z . The

integral [,trE(x, x, t)dx will be the substitute for Tr(De *? 2) in (0.2).
It has also an interpretation as relative trace. Namely, consider D, =
y(0/8u+A) asoperator in C""(RJr x Y, S). We impose spectral boundary
conditions at the bottom of the cylinder. The corresponding closure Z,
is selfadjoint. Moreover, for ¢ > 0, & exp -t 2 — 9, exp —t.@oz is of the
trace class and the following relative trace formula holds:

(0.4) Tr(ge_tgz - 906’_@“2) = / trE(x, x, t)dx.
V4

In order to be able to define the eta function of & using (0.4), we have to
study the asymptotic behavior of (0.4) as ¢t — 0 and ¢ — oo. The small
time asymptotic behavior follows essentially from the corresponding local
heat expansion on a closed manifold and the explicit description of the
heat kernel of the cylinder. To obtain the large time asymptotic we need
some results about the spectral decomposition of & which we recall in
§4. To study the continuous spectrum we may regard & as a perturbation
of Z, and apply standard techniques of scattering theory. It follows that
the wave operators W, (2, &) (cf. (4.8) for their definition) exist and
are complete. Thus, the absolutely continuous part of & is unitarily
equivalent to Z,. Moreover, the scattering operator C = W: oW _is
well defined. Let C(4), 4 € R, be the corresponding scattering matrix
determined by the spectral decomposition of C with respect to the spectral
measure of Z,. Let u ; Tun over the eigenvalues of 4 and denote the
,uj-eigenspace of A by &(u j). For A e R, C(J) is a unitary operator in
EB”; 2 &u ;). Let u; > 0 be the smallest positive eigenvalue of A. If
[A] < i, ,then C(4) acts in Ker 4. It admits an analytic continuation to a
meromorphic function of A € £, = C—((~o0, ~#;]U[#,, o0)) with values
in the linear operators in Ker 4. Moreover, C(4) satisfies the functional
equation

(0.5) C(-)C(A)=1d, yCA)=-CQA)y, A€Z,

In §5 we determine the large time asymptotic behavior of (0.4). The main
result is Corollary 5.16 which states that

(0.6) /ZtrE(x , X, Ddx

_ _5‘7? / M 2e Ty C (=) C' () di + O™
0
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for ¢t > 1, which C'(z) = (8/82)C(z). In fact, we expect a more general
formula to be true. Observe that the scattering matrix C(4) is real analytic
at all real points A which do not belong to Spec(4). Denote by C’(4) the
derivative of C(4) at A ¢ Spec(A4). We claim that the following relative
trace formula holds:

2 2
Tr(@e_tg -D,e tg

= Le - /x Te(C(-A)C () d2

where the A.s are running over the eigenvalues of <. Formula (0.6)
would then be an immediate consequence of this trace formula. Since
C(A) is analytic, this formula leads to an asymptotic expansion of
fz trE(x,x,t)dx as t — oo. The coefficients of this expansion are
determined by the scattering matrix, and are nonlocal in contrast to the
coeflicients occurring in the asymptotic expansion for ¢t — 0.

Based on these results, we introduce the eta function n(s, &) in §6. If
D is a compatible Dirac type operator, then n(s, &) is regularat s =0
and the eta invariant is given by

(0.7) 70, D) = %/0 t‘”zfztrE(x,x, 1) dx dt.

One of our main goals is to compare the two types of eta invariants studied
in this paper. First note that, by (0.5), T = C(0) is a unitary involution
of Ker A, which anticommutes with y. In particular, we may use <t
to define the boundary conditions for D. There is also an equivalent
description in terms of Lagrangian subspaces of KerA. Observe that
Ker A has a natural symplectlc structure defined by ®(x, y) = (yx, y)
where (x, y) denotes the L? inner product of x,y € Ker4. Then L =
Ker(C(0)-1Id) is a Lagrangian subspace, that is, it satisﬁes LeyL =KerA
and ®(L, L) = 0. Furthermore, given ¢ € Ker A, there is associated a
generalized eigensection E(¢, 1) of D (cf. §4). If ¢ € L, then ¢ =
1E(¢, 0) satisfies D¢ =0 and, on R x Y, it has the form ¢+ y where
¥ is square integrable. In particular, ¢ # 0. In other words, ¢ is the
limiting value of an extended L*-solution of D¢ = 0 in the sense of [1].
It follows from Lemma 8.5 that L is precisely the subspace of all limiting
values of extended solutions. Thus, the continuous spectrum of &' gives
rise to a distinguished choice of an involution ¢ of Ker A—the on-shell
scattering matrix C(0)—or, equivalently, to a distinguished Lagrangian
subspace of Ker 4. Our main result can then be stated as follows.
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Theorem 0.1. Let D: C*°(M,S) —» C*(M, S) be acompatible Dirac-
type operator which, on a neighborhood I xY of Y, takes the form (0.3).
Let C(A): Ker4 — Ker A be the associated scattering matrix in the range
[Al < u, and put © = C(0). Then we have

70, D;) = (0, 2).

In part II we shall employ this formula to prove a splitting formula for
eta invariants.

To prove Theorem 0.1, we pick @ > 0 and consider the manifold
M,=MU([0, a] xY). The operator D has a natural extension D(a) to
a compatible Dirac-type operator on M, . It follows from the variational
formulas of §2 that #(0, D(a),) is independent of a. Therefore, it is suf-
ficient to show that Im__,__ #(0, D(a),) = n(0, Z). To establish this re-
sult, we follow partially the approach used by Douglas and Wojciechowski
[11]. Namely, we start out with formula (0.2) and split the integral as

f0ﬁ+ f:}% . In §7 we prove that, as @ — oo, the first integral converges to

n(0, Z). To deal with the second integral, we write Tr(D(a) e P (a)f)

as
S,(a, t) + S,(a, t) where S, is the contribution to the tracergiven by all
eigenvalues A(a) satisfying |A(a)| > a™™ for some 0 < k < 1. Then it
is easy to see that f;% S,(a, t)dt tends to zero as a — oo . It remains to
study the behavior of [°2S,(a, f)dt as a — oo. This is done in §8. If
Ker 4 = {0}, then the continuous spectrum of & has a gap at 0 which
implies that the nonzero eigenvalues of D(a);; stay bounded away from
zero and the proof is finished. This case was studied in [11]. The difficult
part is the case where Ker A # {0} . Then the continuous spectrum of &
has no gap at zero, and eigenvalues of D(a), will cluster at zeroif a — co.
The crux of the argument is to show that the nonzero spectrum of D(a),
becomes asymptotically symmetric near zero, and therefore cancels out in
the limit @ — oo . Let ¢ # 0 be an eigensection of D(a), with eigenvalue
A. Then on [0, a] x Y, ¢ takes the following form
0= e_dul//_'_ + ezlul//_ + (01 ,
where v, € Kerd, yy, = +iy,, and ¢,(u, -) is orthogonal to Ker4
for each u € [0, a]. We call

—iA iA
=€ My, +e™My_

the constant term of ¢. In Proposition 8.14 we show that there exist

ay, 6 > 0 such that, for a > a; and 0 < |A| < J, the constant term
of ¢ is nonzero. Thus, the eigensections of D(a), with sufficiently small
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nonzero eigenvalues are determined by their constant terms. We continue
to investigate the properties of the constant terms. Write v, as y, =
¢ —iyp where ¢ € ker(C(0) —1Id). Associated to ¢ there is a generalized
eigensection E(¢, z) of & with eigenvalue z € R. The main observation
is that the constant term of ¢ differs from the constant term of E(¢, 1) by
a term whose norm is exponentially small as a — co. The constant term
of E(¢, A) has the form e v, + e™C(2) w, . Therefore, the constant
term of ¢ satisfies

(08) lv_—Cyll<e™, axa,

Let L_ =Ker(C(0)+1d) and denote by P_ the orthogonal projection of
Kerd onto L_. Let I: L_ — Ker{y — i) be defined by I(¢) = ¢ — iy¢.
Then we consider the linear operator

SA)=P_oCA)ol

acting in L_ . It follows from (0.8) that det(eZizaS(z) + 1d), considered

as a function of z, has a real zero p such that |p —A| < e~ “. Moreover,

the multiplicity of the eigenvalue A can be estimated by the multiplicity of

- p. Then we study more closely the real zeros of det(ez'mS (z) +1d) near
z = 0. The final result, Theorem 8.32, shows that, up to exponentially
small terms, we may replace the small eigenvalues by the real zeros of
det(e***S(z) +1d) near z =0. Since S(A) satisfies

S(-A)S(A) =1d+0(Y), | <e,

it follows then that the nonzero spectrum of D(a), is indeed asymptoti-
cally symmetric near zero.

1. Eta invariants for manifolds with boundary

Let M be a compact oriented C™ Riemannian manifold of dimension
n with smooth boundary M = Y . We shall assume that the Riemannian
metric of M is a product near the boundary.

Let S — M be a complex vector bundle over M equipped with a
Hermitian fiber metric which is also a product near the boundary. Let
C™(M, S) denote the space of smooth sections of S and C;°(M, S)
the subspace of C°(M, S) consisting of all sections with support con-
tained in the interior of M. Given s,s € C*(M, S), let (s, s’} denote
the inner product of s, s’ defined by the fiber metric of S and the Rie-
mannian metric of M. By L2(M , S) we shall denote the completion
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of Cy° (M, S) with respect to this inner product. Let D: C*(M, S) —
C®(M, S) be a linear first-order differential operator on M , which is
formally selfadjoint; that is, D satisfies (Ds, s') = (s, Ds') forall 5, s €
Cyo(M, S). We assume that, in a collar neighborhood (-1, 0]x Y of the
boundary, D takes the form

(1.1) D=y(@/0u+4),
where y: S|Y — S|Y is a bundle isomorphism, and 4: C*(Y, S|Y) —

C™(Y, S]Y) is an elliptic operator on Y satisfying
2

*

(1.2) y =-1d, yo=-y
~and
(1.3) Ay = —yA, A"=4,

where 4" means the formal adjoint of 4. Thus, 4 is symmetric. Exam-
ples of such operators are Dirac-type operators.

Since Y is closed, A is essentially selfadjoint and has pure point spec-
trum. Let ¢ be an eigensection of 4 with eigenvalue u. By (1.3), y¢ is
also an eigensection of 4 with eigenvalue —u. Thus, the nonzero spec-
trum of 4 is symmetric.

If we regard D as an unbounded operator in LZ(M , ) with domain
Cg" (M, S), then D is symmetric. To obtain a selfadjoint extension of
D:C° (M, S) — L2(M , S} one has to introduce boundary conditions.
Appropriate boundary conditions are the spectral boundary conditions in-
troduced by Atiyah, Patodi, and Singer [1]. Let IT, (resp. I1_) denote the
orthogonal projection of LZ(Y, S|Y) onto the subspace spanned by the
eigensections of A4 with positive (resp. negative) eigenvalues. Note that
the following equality holds:

(1.4) I, =11y
If Kerd # {0}, then the boundary conditions defined by I L are not

selfadjoint. In this case we proceed as in [11, p. 162]. By (1.3), » induces
a map of KerA into itself, which we also denote by y. We make the

following
Assumption. There exists a unitary involution
(1.5) o: Ker4d— Kerd with oy = —yo.

As we shall see in Proposition 4.26, this assumption is always satisfied.
Let L, denote the +1-eigenspaces of o. Then we have an orthogonal
splitting

(1.6) Kerd=L, ®L_



ETA INVARIANTS AND MANIFOLDS WITH BOUNDARY 319
with

(1.7) (L) =L_.
In particular, Ker 4 is even-dimensional. We consider a special case. Let
S|Y =S" @S~ be the splitting of S|Y into the +i-eigenspaces of 7. In
view of (1.3), we obtain operators

A, C¥(Y, 8T - C®(Y,ST) with 4] =4 .

If D is a Dirac-type operator, it follows from Theorem 3 of [24, Chapter
XVII] that Ind 4, = 0. Thus, we get an orthogonal splitting

Kerd =Kerd, @® Kerd_

and dimKer4, = dimKerd4_. Using this splitting one may construct
involutions ¢ asin (1.5).
Let o be such an involution and let Pi denote the orthogonal projec-

tion of LZ(Y, S|Y) onto L, . Put
(1.8) I =11, +Py.
Note that the following equality holds:
g g g
(1.9) Iy =1d-1I_ =1I_.
Let H 1(M , §) denote the first Sobolev space. Put
(1.10) dom(D,) = {p € H'(M, S)|I’ (g|Y) = 0},

and define D : dom(D ) — LZ(M, S) by D¢ = D¢ where, on the
right-hand side, derivations are taken in the sense of distributions. If
Ker4 = {0}, there is only one involution. In this case we shall write D[,
in place of D, .

Lemma 1.11. The operator D, is essentially selfadjoint.

Proof. Let

(1.12) C®(M, S;T1) = {p € C*(M, S)IIT” (p|Y) = 0}.

Then we may construct a two-sided parametrix R: C(M,S) —
C™(M, S;1I7) for D, in the same way as in [1, p. 54]. Thus DR —1d
and RD - Id are smoothing operators, and the lemma follows from the
standard arguments. q.e.d.

Now we shall study the heat operator exp —tD(ZT . For this purpose
we first consider the heat equation on the half-cylinder X = R" x Y.
Let n: X — Y be the canonical projection and S, = n*(S|Y). Let
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D*: C™(S,) — C™(S,) be defined by D* = y(8/8u + A4). Then D*:
C(‘,’o (Sy) — L2(S ¢) is symmetric and, if we impose boundary conditions by
IT° (p(0, -)) = 0, we obtain a selfadjoint extension D;Y . Let e, , be the

kernel of the heat operator exp —t(D;Y )2. Then e, , is a smooth kernel
which satisfies

(0/0t —0%/9u’ + A2)e, ,(u, %), (v, ), 1) =0,

. 14
}gt&el,a(z, z,t) =5Z,Z,

I’ (e, ,((0,+),2,1) =0, I (:—uel’a((u, 3, z, z)¢u=0) =0.

It can be given by an explicit formula. Let ¢ ;» J €N, be an orthonormal
basis for Ran(Hi) consisting of the eigensections of 4 with eigenvalues
0< u, <p,<---. Then we have
(1.13)

e, (1, %), (v,7),0)

= e_”fz't (u—'v)2 (u +v)?
- (oo e[ 50))

- ﬂje“j(““’) erfc <u LA /tj\/f) } ¢;(x)®¢;(¥)

+i il ex (@-v)°
SV \TU T &
2
- exp {— ) }) 7,(x) ® 76,0,

where erfc is the complementary error function defined by
rfc(x) 2# / T
erfc(x) = —= e u.
Sy

Let M = M U—M be the double of M. Then S extends to a bundle
S over M. Because of (1.1), D has a natural extension to an elliptic
operator D: C=(S) — C®(S). Let e, denote the restriction to M of
the fundamental solution of 8/t + D*. Then a parametrix e, for the
kernel K, of exp —tDi is obtained by patching together e, and e,
as in [1, p. 55]. More precisely, let p(a, b) denote an increasing C*™
function of the real variable u, such that p =0 for u<a and p=1 for
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u > b. Suppose the metric of M is a product on the collar neighborhood
(-1,0]1x Y of Y. We define four C* functions ¢,, ¢,, ¥, ¥, by

¢1 =p("ls_%)s v =p(_%’_%)’
$r=1-p(-%,-9), w=1-y.

We regard these functions of u as functions on the cylinder [-1,0]x Y
and then extend them to M in the obvious way. Thus we put

(1.14)

(1.15) €, =918 W+ 8V,

This is a parametrix for the heat kernel K_, and K is obtained from e,
as usually by a convergent series of the form

(1.16) K,=e, +Y (-1)7c, xe,,
m=1

where * denotes. convolution of kernels, ¢, = (0/9¢ + Dz)ea ,and ¢, =
Cp_y ¥ €, > m > 2. It follows from (1.16) that, for t > 0, K isa C*
kernel which differs from e, by an exponentially small term as ¢ — 0.

Lemma 1.17. (i) The operators exp —tDi and D_exp —-tDi are of the
trace class for t > 0.

(ii) As t — 0, there exist asymptotic expansions

—tD? = (j—n)/2
(1.18) Tr(e™"*) ~ > a,(D,)
j=0
and
D, = (j—n—1)/2
(1.19) Tr(D,e” %) ~ Zobj(Da)t .
j=

(iii) There exist local densities a;(D,)(x) and bJ:(DG)(x) such that

a,D,) = /M a,(D,)(x) and byD,)= /M b(D,)(x).

The local densities a j(Da)(x), bj(Da)(x) are polynomials in the jets of
the total symbol of D, with coefficients which are smooth functions of the
leading symbol. Moreover, bj(D,,) =0 if j is even.

Proof. Since, for t >0, K_(x, y, t) isa smooth kernel, it follows that
exp —tDz and D_exp —tDz are Hilbert-Schmidt operators. Employing
the semigroup property, we get (i). Furthermore, we have

(1.20) Tr(e %) = / K, (x, x, 1) dx
M



322 WERNER MULLER

and
2
(1.21) Tr(D,e %) = /M (D K, (x, 7, O),_,) dx.

For the asymptotic expansion, we may replace K by its parametrix e_ .
The asymptotic behavior of f[-1 oy T e,(x, x, t)dx can be studied ex-
plicitly by using (1.13). For the interior parametrix we use the local heat
expansion which implies (1.18). Furthermore, (1.15) yields that

/Ytr (? (;—u +A) e ((u,y), (v,y), t)l,,z,,) dy =0,

and, by Lemma 1.7.7 of [12], there exists a local expansion of the form
o0
i—n—1)/2
tr(D,e,(x, . B)l,_,) ~ > e, ()T
=0

as ¢t — 0. This proves (1;19). g.e.d.
By Lemma 1.17(i), D, has pure point spectrum. Let --- < Aj < Aj a <
-+ be the eigenvalues of D where each eigenvalue is repeated according

to its multiplicity. Consider the counting function
N =#{4lI31 <3}, Az0.

Applying a standard Tauberian theorem to (1.18), we get
Corollary 1.22. As A — oo, one has
NQA) = ‘;"IW LN
(4n)"* T(n)2 + 1)
Therefore, we can introduce the corresponding zeta and eta functions.
Let

o(A™).

(1.23) (s, D) =Y 14,17,
4,#0
and
(1.24) n(s,D,) = Z sign,{j[,%jl_s.
4,#0

By Corollary 1.22, both sides are absolutely converging in ‘the half-plane
Re(s) > n. Let h = dimKer(D,). Then, using Mellin transform, we
obtain

(1.25) {(s,D,) = F(sl/_z) /0 = P Tre ™) — by di
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and
_ 1 ® (s=1)/2 —tD?
(1.26) n(s,Da)———————l_((s_i_l)/z)/o SR THD ™) dt.

By Lemma 1.17, these integrals are absolutely convergent for Re(s) > n
and admit meromorphic continuations to C. For compatible Dirac-type
operators (see below) this was established in [11]. Thus, {(s, D,) and
n(s, D,) are meromorphic functions of s € C. The poles can be deter-
mined from the corresponding asymptotic expansions (1.18) and (1.19).
Of particular interest is the behavior at s = 0. The zeta function {(s, D,)
is always regular at s =0 and {(0, D) = a,(D,) — h. The eta function
n(s, D,) has a simple pole at s =0 with

(L.27) 1}30571(5, D))= (D,).

2
Vi
By Lemma 1.17(iii), the residue is zero for n even. Now suppose that n
is odd. We shall not study the behavior of the residue in general, but only
discuss this question for the case of an operator of Dirac type. We briefly
recall the definition of such an operator (cf. [15], [6]).

Let Clif(M) = ClLif(T M) be the complexified Clifford algebra bundle
over M . The Riemannian metric and connection of 7'M can be nat-
urally extended to Clif(AMf). Let S be a complex vector bundle over
M. A Clif(M) module structure on § is a unital algebra morphism
v: Clif(M) — End(S) .. A vector bundle S with a Clif(M) module struc-
ture is called a Clifford bundle over M if it is equipped with a Hermitian
fiber metric and a unitary connection V such that

(i) for each unit vector e € 7, M , the module multiplication ¢: S, —
S, is an isometry,

(i) Vv =0.

A connection on S, which satisfies (ii) is said to be compatible. Note
that V is compatible iff for all ¢ € C(Clif(M)) and ¥ € C™(S) the
following relation holds:

Vigw) = ¢V(v) + (Vo)w.

We shall assume that the fiber metric and the connection of § are also
products near the boundary.

If S is a Clifford bundle, there is a natural first-order elliptic differential
operator D: C™(S) — C™(S) associated to S which is defined as the
composition

C®(S) 3 (CP(S® T M) - C*(S® TM) — C=(S).
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Here the second arrow is defined by the Riemannian metric of A/, and
the third arrow by the Clif(A/) module structure of S. This is the Dirac
operator attached to S and, following {6], we call D a compatible Dirac-

type operator. Let X,,--- , X, denote a local orthonormal frame field.
Then D can be written as
n
D= 2; XV,
=

Let y € C*(End(S)). Then we call D¥ = D + y an operator of Dirac
type. First consider a compatible operator D of Dirac type. Recall that the
coefficients of the asymptotic expansion (1.19) are completely determined
by the interior parametrix e,. Therefore, we can apply Theorem 3.4 of
[6] to get

Proposition 1.28. Let D be a compatible operator of Dirac type.

(@) If j is even, then b,(D,)=0.

(b) If n is even, then b(D,) =0 forall j.

() If j <n, then bj(Da) =0.

By (1.26), this implies

Corollary 1.29. Let D be a compatible operator of Dirac type. Then
n(s, D,) is holomorphic in the half-plane Re(s) > —2. Moreover, the eta
invariant n(0, D,) is given by

1 % -p —tD?
1.30 0,D =—/ t Tr(D e "°)dt.
(1.30) n0.0,)=— [ (D,

This result was also proved in [11]. In the next section we shall continue
the investigation of the residues of the eta function for general Dirac-type
operators.

Suppose that #n = 2k, k € N, and D is a compatible Dirac-type
operator. Consider the standard involution 7: S — S defined by 7 =

ikel ---&, where e ,--- , e, form a local tangent frame field. Then we
have
(L.31) tD=-Dt and 714 = At

Hence, 7 commutes with the spectral projections I + and induces a map
7: Ker4 — Ker4. Suppose that the involution (1.5) satisfies 70 = a7.
Then 7 also commutes with Hi . Therefore, by (1.31), we obtain 7D, =
—D_ 7. This implies that the spectrum of D is symmetric and, hence, the
eta function vanishes identically. In particular, this is the case if Ker 4 =
{0} . Thus, the interesting case is the odd-dimensional one.
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2. Variation of eta invariants

In this section we shall study the behavior of the eta invariant under the
variation of the operator and the boundary conditions. We first study the
case where the boundary conditions are held fixed. This means that the
operator D remains constant near the boundary, and the involution ¢ of
Ker A4 is not varied. As above, we assume that all metrics and connections
are products near the boundary.

Proposition 2.1. Let D, be a C™ one-parameter family of formally
selfadjoint elliptic first-order differential operators on M . Suppose that, on
a collar neighborhood (-1, 01 xY, D, is given by

D, =7(8/0u+ A)

with y and A independent of v and satisfying (1.2), (1.3). Let ¢ be a
unitary involution of Ker A as in (1.5). Let B, = (D,), be the selfadjoint
extension of D, defined by o, and put Bv = (d/dv)B,. Then

0 —B2, _ 9 5 —tB:
3_’0 TI'(BUe ) = (1 + 2ta_t) Tr(Bve )

Proof. The operators D, act on smooth sections of a fixed vector bun-
dle §'. However, the fiber metric of S and the Riemannian metric of M
may depend on v and, therefore, the inner product in C*(M, S) may
also so. In any case, the corresponding Hilbert spaces LZ(M , S), have
equivalent norms. Hence, the trace functional is independent of v [20,
p. 161]. Moreover, by our assumptions, the domains of the operators B,
agree as topological vector spaces. Hence, we may regard B, as a one-
parameter family of linear operators in a fixed Hilbert space LZ(M » 8o
with domain independent of v . Thus, Bv =dB,/dv is well-defined and

0 —tB:, 0 —tB?
3 Tr(Be )= Tr (E)—'U(B”e ))

. _sp? _¢/Rp?
= Tr(B e tB”) +Tr (Bv%e IB”> .

(2.2)
To determine the derivative of the heat operator with respect to the pa-

rameter v, we proceed as in [22]. We use the identity

17} 2\ 0 —B? . 5y —tB
(2.3) (E + Bv) %e =—(B,B,+B,B,)e )
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Since the initial condition is independent of v, we can use Duhamel’s
principle to solve (2.3). This leads to

3 —B2 ¢ —(1— Bz . . -Bz
04 g = [ TRBB, BB dr
Using (2.4) and the trace identities, we get
0 B . a s —tB?
Tr (Bv 35¢ : ") = -2t Tr(B,B, e : )= ZtE Tr(B,e ). qed.

Let K, (x,y,t) be the kernel of exp ——tBj . Then in the same way as
in the proof of Lemma 1.17 it follows that

Te(Bye™™) = [ (D) K,(x, ¥, Dl

where Dv = (d/dv)D, is a first-order differential operator. If we employ
Lemma 1.7.7 of [12], then, as 7 — O, there exists an asymptotic expansion
of the form

o —_— 2 o F—n—
(2.5) Tr(Be ™) ~ 3 ¢ ()02,
j=0

where the coefficients ¢c;(v) are again local in the sense that there exist
densities ¢;(v, x) such thatc;(v) = [, ¢;(v, x).

Proposition 2.6. Let the assumptions be the same as in Proposition 2.1.
Moreover suppose that dimKer(B,) is constant. Then, for Re(s) > n, we
have

9 _ 8 AT 12 iy —tB]
(2‘7) av 77(5 ’ B,U) - r((s + 1)/2) A t Tr(Bve )dU ’

where the integral is absolutely converging.

Proof. We follow the proof of Proposition 8.39 in [22]. Let Re(s) > n
and 7 > 0. Using Proposition 2.1, (2.5) and integration by parts, we
obtain

0
av Jo

T . _.p?
(2.8) = / {2 (1+2t%>Tr(Bve Boy dt
0

T " 2
{52 Tr(Bve—tB”) dt

. _7R? r L g2
=271 ey — s / AP TrB o) dt.
0

Let H, be the orthogonal projection of L2(M ,S), onto KerB, . Since
dimKer(B,) is constant, H, depends smoothly on v. By the selfadjoint-
ness of B, , we have B H = H B, =0 and, therefore,

B,=(1d—-H,)B,(1d—H,),
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which implies

=-H B (Id—H)+(d-H,)B (Id-H,) - (Id—H B, H,.
Since |(Id-H,)exp —th,ll < e™* for some ¢ = c(v) > 0, it follows that

|Tr(Bve_tBi)| < C,e 1. If we pass to the limit T — co, the first term on
the right-hand side of (2.8) vanishes and the proposition follows. g.e.d.

By (2.5), the integral on the right-hand side of (2.7) admits a meromor-
phic continuation to C. At s =0 it has a simple pole with residue equal
to 2¢,(v). Thus we have

Corollary 2.9. Let the assumptions be as in Proposition 2.6. Then
(0/0v)n(s, B,) is holomorphic at s =0 with

7]
557162 B,)locg = ==, (v),
where c,(v) is the nth coefficient in the asymptotic expansion (2.5).

Now observe that the poles of #(s, B,) arelocatedat s =n—j, j€N.
In particular, poles stay separated during a deformation. Since
(8/0v)n(s, B,) is holomorphic near s = 0, it follows that Res__, 7(s, B,)
is independent of v. We shall now extend this result to the case where
dimKer(B,) is not necessarily constant.

To study #(s, B,) near v = 0 we pick ¢ € R not an eigenvalue of
+B,. By continuity it is not an eigenvalue of any +B, for |v| < &.
Let P, denote the orthogonal projection of L2(M , ), onto the subspace
spanned by all eigensections with eigenvalue A satisfying 4| < ¢. Put

!
(2.10) B, =B (Id-P)+P,

Then, for |v| < g, B; is invertible and depends Smoothly on v. Since

P_ has finite rank, the eta function is also defined for B; , and

n(s, B,) =n(s, B))+ > signd|d,[”" — Tr(P,).

Mj|<c

Thus #5(s, B,) and #(s, B;) differ by an entire function. In particular,
n(s, B,) and (s, B;) have the same residue at s = 0. Furthermore, the
proofs of Propositions 2.1 and 2.6 work for B; as well. In fact, the proof
of (2.7) is simplified because B' is invertible. Thus

9 / [5=0/2 gt B
A1 — *Ydv,
Q1) gonls, B) =~ 5o 1)/2) / Tr(Ble ")) dv
for Re(s) > n. Since P, is a finite rank operator, it is easy to see that

. _ 712 . _ 2
Tr(B e " ®") = Tr(B,e ™) + 0(1)
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as ¢t — 0, which together with (2.5) shows that the integral on the right-
hand side of (2.11) admits a meromorphic continuation to Re(s) > —1.
Moreover, it has a simple pole at s = 0 with residue 2¢,(v) where c,(v)
is the corresponding coefficient in (2.5). Therefore, (8/0v)n(s, B:)) is
holomorphic at s =0 and

0 ' 2
30 (s, B)l;_o= —ﬁcn(v).

This implies

Corollary 2.12. Let the assumptions be the same as in Proposition 2.1.
Then the residue of n(s, B,) at s =0 does not depend on v .

Proof. As explained above, we have

/
Res#(s, B,) = Res#(s, B,).

Moreover, the poles of #(s, B;) may only occur at s=n—j, j€N. Let
y C C be the circle of radius 1/2 with center at 0. Then (8/9v)5(s, B;})
is holomorphic in the interior of y and, therefore,

;—Ul}fosn(s, B;) = ZLm /y aa—vn(s, B;)ds =0.
q.e.d.

Thus Res,_,#(s, D,) is a homotopy invariant of D, .

As an application we consider a compatible Dirac-type operator D:
C*(M,S) - C*(M,S) which, on (~1, 0] x Y, takes the form (1.1).
Let ¥ € C(End(S)) be such that y* = w. Moreover suppose that,
on (—1,0]xY, v satisfies (0/0u)w{u,y) =0 and yy = —yy. Put
DY =D+ y. Then DY is formally selfadjoint and, near Y, it takes the
form (1.1). Let y € C*(R) be such that x(u) = 0 for u < —3/4 and
x(w)y=1 for u>—-1/2. We regard y as a functionon (-1,0]x Y in
the obvious way, and then extend it by zero to a smooth function on M .
For v ¢ R, put

D! =D+v(l - x)¥ + xy.
Then DZ’ is a one-parameter family of Dirac-type operators which sat-
isfy the assumptions of Proposition 2.1. Let ¢ be a unitary involution
of Kerd as in (1.5). In view of Corollary 2.12, the residue at s = 0 of
n(s, (DY) ») equals the residue at s = 0 of n(s(Dg’ );)» Which is deter-
mined by the coefficient b, ( (Dg’ );) of the asymptotic expansion (1.19).
Since D is a compatible Dirac-type operator, the corresponding local den-
sity b,(x, (Dg’ ),) has support in (-1, 0] x Y. Therefore, in order to
determine b,, we may replace M by the half-cylinder R™ x Y. Let
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S be the pullback of S|Y to R™ xY andlet D = y(8/0u + A) + xw
regarded as operator in C*(R™ x Y, §). Here y(0/0u + A) is the ex-
pression for D on (—1,0] x Y. Let ¥ € C*(End(S)) be defined by
v(u,y) = w(0,y), vy € Y. Note that  satisfies yyy = —yy. For
v € R, put R R
D, =D+uv(l1-x)y.

Thus 130 = D . Moreover, on (—1/2,0]x Y, we have IA)U = y(6/6u+/f).
We use IT° , defined with respect to A , to introduce spectral boundary

conditions. Let (IA)U) » be the corresponding selfadjoint extension in L.
Now we observe that Lemma 3.9, Propositions 3.11 and 3.12 can be ap-
plied to the present case as well. This implies that the integral

/ tr((fiv)o_e_t(ﬁ”)i (x,x))dx
z

is absolutely convergent and has an asymptotic expansion as ¢t — 0. For
v = 0, the coeflicient of 12 equals our b, above. Furthermore, if we
proceed as in the proof of Proposition 2.1, then

9 By o~ (Do
6u/2tr((DU)o_e (x, x))dx

N2
- (1 +2t%) /Ztr((l — x(x)w(x)e P (x| x))dx.
Since y,_ anticommutes with (x) and
7, © €Xp —t(f)v)i(x , X) = exp —t(ﬁv)i(x s X)o P,
it follows that the right-hand side vanishes. This implies that (9/0v)b,(v)
=0. But b,(1) =0. Thus b, =0 and we have proved

Proposition 2.13. Let D: C*°(M, S)— C*(M, S) be any Dirac-type
operator which satisfies (1.1). Let D, be a selfadjoint extension defined by
some unitary involution (1.5). Then n(s, D,) is regular at s =0.

Let D, be a smooth one-parameter family of Dirac-type operators such
that, on (-1,0]x Y, D, = y(0/0u+ A) with y, A independent of v
and satisfying (1.2), (1.3). Let ¢ be any unitary involution of KerA as
in (1.5). Put B, = (D,),. Then n(s, B,) is holomorphic at s = 0.
However, if some eigenvalues cross zero, then #(0, B,) is not smooth in
v, but has integer jumps. Let

(2.14) 70, B,) =n(0, B,) modZ
be the reduced eta invariant which takes values in R/Z. If B; is defined

as in (2.10), it is clear that 7(0, B,) = 7(0, B;}) . Using our results above,
we get
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Proposition 2.15. (i) The reduced eta invariant %(0, B,) is a smooth
Junction of v and

d _ 2
%U(O, B,) = —-—\/—;cn(v).
- (ii) If dimKer(B,) is constant, then n(0, B,) is smooth and

2510 B,) = ~=c,(v)

Here c,(v) is determined by the asymptotic expansion (2.5). Moreover,
there exists a density c,(x; v) which is locally computable from the jets of
the complete symbol of D, such that c,(v) = [, c,(x; v).

We shall now discuss two applications of our variational formulas. Let
D be a Dirac-type operator on M , which satisfies (1.1)-(1.3). Let a > 0
and set

M,=MU([0,a]xY).

Then the bundle S can be extended in the obvious way to a vector bundle
S, over M, and D has a natural extension to a Dirac-type operator D(a)
acting in C°°(Ma ,S,) which has the same properties as D = D(0). Let o
be a unitary involution of Ker4 asin (1.5). Let D(a), be the selfadjoint
extension of D(a): C;°(M,, S,) — L*(M ,»S,) defined above.

Proposition 2.16. The eta invariant n(0, D(a),) is independent of a.

Proof. First we shall show that dimKer D(a), is independent of a.
Let ¢ € Ker D(a), . This is equivalent to say that ¢ € C °°(Sa) satisfies

(2.17) D(a)p =0 and II’ (p|({a} x Y)) =0.

Let ¢ i» JEN, be an orthonormal basis for Ran(Hfr) consisting of the
eigensections of 4 with eigenvalues 0 < u, < g, <--- . In view of (2.17),
we may expand ¢|([0, a] x Y) in terms of the ¢;:

p(u,p) =Y e ",
j=1

Let @ > a. Then ¢ can be extended in the obvious way to § €
KerD(a')a , and the map ¢ — ¢ defines an isomorphism of KerD{(a),
onto KerD(a')a . Next, observe that there exists a smooth family of dif-
feomorphisms f,: (-1, 0] — (-1, a] which have the following properties

f(u)y=u forue(-1,-2/3)

and
f(u)y=u+a forue(-1/3,0]
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Let y,: (=1,0]1xY — (~1,a] x Y be defined by y (u,y)= (), ),
and extend y, to a diffeomorphism y,: M — M_ in the canonical way,
ie., y, is the identity on M — ((—1, 0] x Y). There is also a bundle
isomorphism ¥ : $ — S, which covers y, . This induces an isomorphism
v, : C*(M,,S) — C7(M,S). Let 5(a) =y, oD(a)o (y/:)_l. Then
D(a) is a family of Dirac-type operators on M , and D(a) = y(8/8u+ A)
near Y . Furthermore, D(a), = v, o D(a), o (1,1/":)_l . Hence

n(s, D(a),) = n(s, D(a),) and v (KerD(a),) = KerD(a),.

In particular, dim Ker 5(a) ., is constant, and we apply Proposition 2.15(ii)
to get

d

%’7(0, D(a)a) = *\—/——C,,
Now let S1 be the circle of radius 24, =: Sa x Y — Y be the natural
projection, and S, = 7*(S|Y). We define D,: C*(5,) — C*(5,) by
D = y(0/0u + A). Since c,(a) is locally computable, it follows in the
same way as above that

d = 2

d—an(O, D)) = —ﬁcn(a).

But a direct computation shows that the spectrum of ﬁa is symmetric.
Hence #(s, D,) = 0 and, therefore, ¢ (a) =0. g.ed.

Next we shall study the dependence of the eta invariant 7(0, D,) on
the choice of o. This question was independently settled by Lesch and
Wojciechowski [21]. Following [21], we pick a selfadjoint endomorphism
T of Ker(y —Id) such that ™7 = 0,0,/ Ker(y —1d) and -z < T < 7,
Le.,, T = (1/2ni)log(g,0,| Ker(y—Id)) . We extend T to Ker A by putting

T =0 on Ker(y +1d). Let p, = ™7 and put
av=p;aopv, 0<v<l.

This is a one-parameter family of unitary involutions of Ker 4 which
anticommute with y and connect g, to o, . In order to study the variation
of the eta invariant of D, we have to transform the family D, into
one with fixed domain. This can be done as follows. Let f € C “(R)
be such that f(u) =1 for —1/3 < v and f(u) = 0 for u < -2/3.
Note that, by Fubini’s theorem, we may identify L2([—1 ,01xY, S) with
LZ([—I , 0]; L2(S|Y)) . Therefore, we may regard Lz([~1 , 0]; KerA) as
a closed subspace of L2(M , 9). With respect to this identification, we



332 WERNER MULLER

define a one-parameter family U, ,0 < @ < I, of unitary operators in
L2(M, S) as follows: Set U, =1Id on LZ([O, 11; KerA)l and

(U,0)w) = ™ (o)),  ¢eL*([-1,0]; KerA).

Let Hvi be the orthogonal projection (1.8) defined with respectto g, 0 <
v < 1. Then, by definition, we have

(2.18) Uolll =T, 0<v<lL
Put

7 *
(2.19) D, =U,D, U/, O0<v<l

By (2.18), we get
domD; =domD, .
v 0

Hence D; , 0 <wv <1, is a smooth family of selfadjoint operators in

L2(M , §) with fixed domain. Moreover, it follows from the definition
of U, that U/(C;°(M, S)) = Cy°(M, S). Put D, = UDU, . Then
D;: Co(M,S) — LZ(M , ) is symmetric, and D; is the selfadjoint
~ extension of D; defined by the boundary conditions HO_((olaM ) = 0.
This implies

(2.20) D;U =D, - 2rivf'yT, O<v<l.

By (2.18), D, and D; have the same spectrum. Hence, the eta function
n(s, D; ) is \:fell deﬁn;d and equals n(s, D, ). Note that D; is not a
differenutial operator, but our results above canv be easily extended to D;v .
In particular, this applies to Proposition 2.15. Thus

2

20, D,) = ==, (v).

where ¢, (v) is the coefficient of ¢~ in the asymptotic expansion of
Tr(D), exp—t(D’, )?). By (2.19) and (2.20), the trace equals

1/2

D? tD?

. —tD? * * — . -
Tr(D), Ue” " U;) = Tr(U; D), Uje™"") = ~27i Tr(f'yTe™ ).

Since the support of f' is contained in (-1, 0), we may replace
exp —tDﬁ by its parametrix on [—1, 0] x ¥ which can be taken to be

12 2
exp{—————(u—u) }e_m (x, »).

1
Vani Y
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This shows that

2
Tr(f'yTe Do) = \/i_n? Tr(yT) + O(e™ /")

as t — 0 and, therefore,

2r 1
c,(v) = ﬁ Te(T) = m logdet(a,a, | Ker(y — 1d)).

Thus we have proved

Theorem 2.21. Let D: C°(M,S) — C*(M, S) be a Dirac-type op-
erator which, on (—1,0] x Y, takes the form D = y(8/0u + A) with
conditions (1.2), (1.3) satisfied. Let o, 6, be two unitary involutions of
Ker 4 such that o,y = —yo;, i=0,1. Then

1
n(0, Dol) -n(0, D%) = —Elogdet(aoallKer(y —1i)) modZ.
This result was proved independently by Lesch and Wojciechowski [21].

3. Heat kernels on manifolds with cylindrical ends

Let the setting be the same as in §1. We introduce the noncompact
manifold
Z=MU@®R xY)

by gluing the half-cylinder R* x Y to the boundary Y of M . We equip
R’ x Y with the canonical product metric. Together with the given metric
on M we get a smooth metric on Z. Then Z becomes a complete
Riemannian manifold of infinite volume. We extend the bundle S with
its fiber metric and the operator D to Z in the obvious way. The extended
bundle and operator will be also denoted by S and D, respectively. Thus,
on R*xY,
D =y(0/0u+ A),

where y, 4 satisfy (1.2), (1.3).

Let C§° (Z , S) be the space of compactly supported smooth sections of
S over Z, and LZ(Z , §) the completion of Cy°(Z,S) with respect to
the natural inner product defined by the fiber metric of S and the metric
of Z. Then
(3.1) D:CX(Z,8) - LYZ, )

1S symmetric.
Lemma 3.2. The operator (3.1) is essentially selfadjoint.
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Proof. Tt suffices to show that (D+1{ )C((,” (Z,S) is dense in L2(Z ,S).
Suppose that y € L*(Z, S) is orthogonal to (D+i)Cy°(Z , S) . By elliptic
regularity, v is smooth and satisfies Dy = Fiy. If we expand ¥ on
R* x Y in terms of the eigensections of yA, it follows that  satisfies an
estimate of the form

lw@, < Ce™™, (u,y)eR " xY,

for some constants C, ¢ > 0. Applying Green’s formula, we get (Dy, y)
={y, Dy) and, therefore, ¥ = 0. q.e.d.

Let & denote the unique selfadjoint extension of D . In this section
we shall investigate the kernel K(x, v, t) of the heat operator exp —t<Z z
We construct a parametrix for K as follows. Let Q, be the restriction
to M of the fundamental solution of /9t + D* on the double M of
M, ie., Q, = e, in the notation of (1.15). Furthermore, let Q, be the
fundamental solution of 8/t — 8* /0 u* + 4> on Rx Y. Then

2 2
Q((u, x), (w,y),t)= —\/%exp{—(u;tv) }e_"1 (x,7),

—4?

where ¢ (x, y) is the kernel of exp —tA”. Let the functions b5 by,
¥,, v, be defined by (1.14), and put

(33) Q= ¢1Q1W1 + ¢2Q2W2~

Then Q is a parametrix for K, and K is obtained by a convergent series
similar to (1.16):

oo
(3.4) K=0+> (-1)"Q,*0Q,

m=1
where Q, = (8/8t+D)Q, Q, =Q,,_,*Q, for m>2,and * denotes
convolution of kernels. For ¢t > 0, K is a C™ kernel which represents
exp —t< 2 In particular, it satisfies (9/9t + Di)K (x,y,t) = 0. More-
over, for each x, € Z and m € N, there exist constants C, ¢ > 0 such
that

IDEDL(K(x, ., )~ Q(x, y, D)
< Cexp(—c(d(x, J»co)2 +d(y, xo)2 + 1)/0)e”

forall x,yeZ, k,!,<m and t>0.
Let D, = y(0/9u+ A) regarded as operator in C®R"x7Y,S). Sup-
pose that there exists a unitary involution ¢ of Ker.A4 such that yo =

(3.5)
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—oy. Let Hi be the orthogonal projection (1.8) with respect to o, and
put
C¥R" xY,S;I]) = {p e C*(R" x Y, S)|IT}(p(0, )) = 0}.
Denote by C;°(R* x Y, S;11}) the subspace of C*(R" x Y, §;I17)
consisting of the sections which vanish for ¥ > 0. Then
D,: CPRYxY,S;10) - )R x ¥, §)
is essentially selfadjoint. Let 7, be the unique selfadjoint extension. We

observe that the kernel K, of exp —t@oz is given by formula (1.13) with
the roles of ¢; and y¢; switched. From this formula for K, follows
immediately that, for each m € N, there exist C,, ¢, > 0 such that
a* d' / /
'B_FWAiAg'(KO((u, y)’ ('U, y )’ t) - Ql((ua y)’ ('U, y )’ t))

< C, exp(—c, (u” +v°)/1)

(3.6)

for y,y' €Y, u,v>1,and k,I,p,q <m. We extend exp —t@oz by
zero to an operator in LZ(Z ,S).

Theorem 3.7. For t > 0, the operators exp —t<& 2 exp —t@oz and
D exp —tD 2 _ D, exp —t@oz are of the trace class.

Proof. Pick x € C(Z) suchthat 0 < x <1, x(z)=1 for ze M
and y(u,y)=(1+ uz)_1 for (u,y) € [1, c0) x Y. Denote by U, the

operator in r? (Z , S) defined by multiplication by x. Then we may write
exp —t< 2 _ exp —t@oz
= (exp _Lg? exp L

2

- t
3 9()2>onlonoexp—§92

+ exp —%9020 U, o Ux_l o (exp —%92'— exp —%93) .

It follows from (3.5) that (exp—§92 - exp—%@oz) o Ux_l and Ux_l o

(exp—12 2 _exp— %902 } are Hilbert-Schmidt operators. Furthermore, the
function

(z,2) e R x V) x (R" x ¥) > x(2)1Q,(z, 2, 1)]
belongs to L>((R* x ¥) x (R x Y)). Together with (3.6) this shows that
exp —tF; o U, is Hilbert-Schmidt. By (3.5), it also follows that U, o
exp —t2° is a Hilbert-Schmidt operator. Thus exp(—t9 2) - exp(—t@o2 )
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can be written as a product of Hilbert-Schmidt operators and, therefore,
is of the trace class. The remaining case is similar. g.e.d.
Put

(3.8) E(x,y,t)=D K(x,y, ).

This is the kernel of & exp —t<Z z,
Lemma 3.9. For each t > 0, the function x — trE(x, x, t) is abso-
lutely integrable on Z .
Proof. 1t follows from (3.5) that tr{D (K(x,y,?) - Q(x,y, 1))|,-,}
is absolutely integrable on Z , and the integrated absolute value is O(e =</ h
as ¢t — 0. Furthermore, by definition of @, ,
1 —t4? (

a /
y (am) Qi((w, w), (v, w), O] u=v, ===y, e

Since y4 = —Ay and y acts fiberwise, we have tr(D Q,(x, y, Dl yey)
= 0. Thus

(3.10) (D, Q(x, ¥, 1)) = t1(D,($,(x)Qy (X, ¥ 5 ))loy)-

The right-hand side has compact support which implies the lemma.
Proposition 3.11. For ¢t > 0,

/
w, w )

w='w' .

2 2
x(@e? — g T = /Z wE(z, z, t)dz.
Proof Let Ey(z,z',t) be the kemnel of Z,exp —t902 . Then
Ey(z, Z',t) = (D), Ky(z, 2, t). Using the explicit description of K|,
similar to (1.13), we get

oo —2t
et

— cE - _ —u*jt u -
trEo((u:y):(u:y):t)—;m{ﬂj(l e )+te }
x ({y¢;(¥), &) +{&;(3), v$;(¥)})
=0.

The last equality follows because y, = —y,, y € Y. Since E — E,, is the

kernel of & exp(—tZ 2) -2, exp(—t.@o2 ), the proposition follows from
Lemma 3.9 by the standard arguments.

Proposition 3.12. (a) As t — 0, there exists an asymptotic expansion
of the form

/ trE(z,z,t)dz ~ Zaj('D)t(j_"_l)/z.
z :
j=0
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Moreover, there exist local densities a;(D)(x) with support contained in M
such that a;(D) = [, a;(D)(x).

(b) If D is a compatible Dirac-type operator, then a; (D)=0 for j<n
and a,(D) =0 for k even.

Proof. Tt follows from (3.5) and (3.10) that

/ trE(z, z,)dz = / tr(Dz(¢2(z)Q2(z, z', t)|z=z,)dz + O(e_c/t).
z z
The integral on the right-hand side equals

/Z $,(2)t(D,0y(z, 2, 1)|,_,) dz
(3.13) .
+ / &) / tr(vQ,((u, ¥), (4, ), 1)) dv du.
—1 Y

If we employ Theorem 0.2 of [6], we obtain an asymptotic expansion of the
first integral. This expansion has the properties claimed by the proposition.
To deal with the second integral we may replace Q, on [-1,0]xY byan
appropriate parametrix, say (47zt)_1/ 2 exp(—(u—'u)2 /4t) exp —14%. Hence,
up to an exponentially small term, the second integral equals
Tr(ye_’Az)/\/m. Let S|Y = S, @ S_ be the splitting into the =+i-
eigenspaces of y, and A the restriction of 4 to C™(S ). Then

2
Tr(ye ) = i{Tr(e ™) - Tr(e +*-)} = iInd 4, .
This proves (a). If D is a compatible Dirac-type operator, then Ind 4, =0
by Theorem 3 of [24, Chapter XVII]. Moreover, by Theorem 3.4 of [6], the
coeflicients bj in the asymptotic expansion of the first integral of (3.13)
vanish if either j <n or j=2k, ke N.

4. The spectral decomposition

In this section we summarize some results about the spectral decompo-
sition of the selfadjoint operators & introduced in the previous section.

Theorem 4.1. The point spectrum of & consists of a sequence --- <
A A S of eigenvalues of finite multiplicity with +oco as the only
possible points of accumulation. There exists C > 0 such that

#A4 <A <Cca+A), A0

Proof. 1t is spﬂicignt to prove that the spectrum of & 2 consists of
eigenvalues 0 < 4, <4, <--- of finite multiplicity and
#A; 14, <a<C1+4"),  A>0,
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for some constant C > 0. If & is the Laplacian of Z acting on func-
tions, then this has been proved by Donnelly [10]. His method extends
without difficulties to the present case. q.e.d.

Let Lj(Z ,S) be the subspace of L2(Z ,S) spanned by all eigensec-

tions of & . This is also the discrete subspace for & 2. Let Z, denote
the restriction of & to LZ(Z ,S).
Corollary 4.2. For t >0, exp —t@j is of the trace class and we have

Tr(exp —t@j) = Ze_lft.
j

The proof can be derived from Theorem 4.1 by the standard arguments.
Next we study the behavior of the eigensections of & at infinity. Let
¢ ;» J € N, be an orthonormal basis of Ran(I'Ii) consisting of eigensec-
tions of 4 with eigenvalues 0 < 4, < u, <---. Then y¢j , jEN,isan

orthonormal basis for Ran(I1”) with eigenvalues —u ;- Since L? (Zz,S)
is the direct sum of Ran(Hi) and Ran(I1°), we get in this way an or-
thonormal basis for L2(Z ,S). Put

(4.3) V=56, %18),  JeN.

Then z//j+ and z//j_ are eigensections of yA4 with eigenvalues u ; and —u i
respectively. Moreover, we have

(4.4) W =7y,

and {q//j+ R t//j"} is an orthonormal basis of the eigensections of yA. Sup-

pose that ¢ € L2(Z , S) satisfies Dp = A¢, 4 € R. Then, on R'xY,we
may expand ¢ in terms of the basis just constructed:’

o(u,y) =Y _{f;,wy; )+ gwy; M)},

j=1

where the coefficients fj ) &; satisfy

(o ") (2)-4(0)
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Using the square integrability of ¢, we obtain

=Y a {exp —\/ 15 = Puyy] (v)
u;>14|
ﬂ_] —4 P 2 -
+WCXP (—\/ﬂj —Au ¥; ») ¢ -

j
In particular, if A = 0, then (4.5) can be written as

o
(4.6) p(u,y) =Y ae ""p,(y).

,uj>0
Let u e 0 be the smallest positive eigenvalue of 4 such that u o 1A} .
Then (4.5) implies

lo(u, )i < Cexp(—y/u} —2u/2),  u20,

for some constant C > 0. Thus we have proved
Proposition 4.7. Let ¢ € LZ(Z , S) be an eigensection of & . Then
there exist C, ¢ >0 such that, on R* x Y, we have |o(u, y)|| < Ce™ .
We turn now to the study of the continuous spectrum of & . First we
note that the operator &, defined in §3 has no point spectrum. Indeed,
suppose that ¢ € C°°(R+>< Y, S) satisfies Dyp =0 and IT (¢(0, ) =0.
Then ¢ has an expansion of the form

o(u,y)= > c;""r¢,(»,

u;20

so that ¢ cannot be square integrable unless ¢ = 0. Thus |, has pure
absolutely continuous spectrum.

Let J be the canonical inclusion of L? (R* x Y, S) into LZ(Z , S).
Consider the wave operators

(4.8) WD, Py =s— lim " Je".

Theorem 3.7 together with the Kato-Rosenblum theory [17] and the
Birman-Kato invariance principle of the wave operators [18] implies

Proposition 4.9. The wave operators W _(Z , Z,) exist and are com-
plete.

Thus W, (2, Z,) establishes a unitary equivalence of &, and the
absolutely continuous part &, of & .

Another method to establish the existence and completeness of the wave
operators is based on the method of EnB (cf. [16]). As a by-product one



340 WERNER MULLER

obtains that the singularly continuous spectrum of < is empty. Thus we
have '

Theorem 4.10. (a) & has no singularly continuous spectrum.

(b) The absolutely continuous part <, ofZ is unitarily equivalent to
9.

0The wave operators can be described more explicitly in terms of gener-
alized eigensections (cf. [16]). Let @ be the set of all nonnegative eigen-
valuesof 4. Let ue w. If u >0, let £(u) denote the u-eigenspace. If
u=0,put &(u) =Ker(c—1). Let =° be the Riemann surface associated
to the functions /A + u, u € w, such that /A + u has positive imagi-
nary part for u sufficiently large. Thus X’ is a ramified double covering
n’: ' — C with ramification locus {+u | u € w}. To each u € @ and
¢ € &(u) there is associated a smooth section E(¢, A) of S which is a
meromorphic function of A € £° and satisfies

DE(¢,A) =’ (AE(¢, A), AeY’,

(cf. [16] for details). The half-plane Im(i) > O can be identified with
an open subset FP° of X°, the physical sheet. Each section E(¢, A)
is regular on 8FP° = R. In particular, E(¢, A) is regular for A ¢
(—oo, —u] U [u, oo). This is the generalized eigensection attached to ¢.
If ¢, j €N, is the basis of Ran(l]i) chosen above, then the E(¢;, 4)
form a complete system of the generalized eigensections of 2. More
precisely, this statement means the following. Let ¢ € CgO (Z,S). Put

6,0 = [ E,. 0, ol dz,  jeN.

For u € w define the measure dr# by

dt,(A) = A - i / 2nA dA.

Then, for any m € N, the function 4 — (1 + /lz)m(ﬁj(/l) belongs to
LZ([,uj, oo); dr#.) as well as to Lz((—oo, —1;1; dr#_) , and the orthogonal
J 7

projection ¢, of ¢ onto the absolutely continuous subspace Lﬁ AZ,5)
of & has the expansion

0(2) =3 { | B, 2. 20,05, @)
(4.11) j=1 A

+ OOE(¢j, 2, z)(ﬁj(—/l)drﬂj(l)}.

]
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We shall now consider more closely the generalized eigensections E(¢, 4)
attached to ¢ € Ker(cd — 1). Let w € Kerd4, and define A(y, ) €
C*R*xY,S) by

by, 2, (u,y)=e ™ y(y), AeC.

Let x € C™(R) such that y(u) =0 for u <1 and yx(u)=1 for u>2.
We regard y as a function on R* x Y in the obvious way, and then extend
it by zero to a smooth function on Z . Observe that (D2 -2 Yoxh(w, A))
is a smooth section with compact support. In particular, it is contained in
L*(Z,S). Put

(4.12) F(y, ) =xe ™y —(@° -2 (D* - D) xh(v, D)),
_ Im(4) > 0.
Then F(y, 4) belongs to C*°(Z, S) and satisfies
D’F(y,A)=i1"F(y,4), Im@)>O0.

The function A — F(y, A) admits also a meromorphic continuation to
%’ [16]. Let #, > 0 be the smallest positive eigenvalue of 4 and put

(4.13) Zl =C—{(-o0, —[LI]U[[LI, 00)}.
Then, in particular, F(w, i) is a meromorphic function of 4 € X, . We

explain this in more detail. Let H l(Z , S) denote the first Sobolev space.
Let ¥,,--- , ¥, be an orthonormal basis for Ker 4. For any b>0 we

introduce a closed subspace of H ! (Z,S) by
(4.14) Hy(Z,8)={pc H'(Z,S)|(p(u,"), y;)=0
foru>b and j=1,---,2r}
Consider the quadratic form
(4.15) ()= IDol*, 9 EeH,(Z,S).

Let % be the closure of H,(Z,S) in L*(Z,S). Then the quadratic
form (4.15) is represented by a positive selfadjoint operator H, in #;.
This operator is analogous to the pseudo-Laplacian used by Colin de
Verdiere [9]. Similarly to Theorem 1 of [9], the domain of H, can be
described as follows. For j, 1 < j < 2r, we define the distribution Tl{
by

T[f(¢)=(‘/7(b’)"//])’ WEC(())O(Z’S)’

where § denotes the restriction of y to R* x Y. Then ¢ € H,(Z, S)
belongs to the domain of H, iff there exist C|, .-, C, € C such that
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D* Y i C; Tl{ belongs to L? (Z,S). Here D2¢ is taken in the sense of
distributions. If ¢ is in the domain of Hj, then H, p = D*p— > ; CjTl{ ;

Lemma 4.16. The essential spectrum of H, equals [uf , 00) where j, >
0 is the smallest positive eigenvalue of A.

Proof. We introduce Dirichlet boundary conditions on {b} x Y . This
gives rise to a selfadjoint operator Hb,o . Since Y is compact, it follows
that exp(—tH,) — exp(~tH, ;) is of the trace class for ¢ > 0. Hence,
H, and H, , have the same essential spectrum. By definition, we have
H,, = Hy , ®H, . where H, . acts in L*(M,,S) and H, . in
L*R* x Y, S). The operator H, ;. is obtained from D?, acting in
C* (M, ,S), by imposing Dirichlet boundary conditions. Therefore, H, , .
has pure point spectrum. The operator H, oo Can be analyzed by applying
separation of variables. This shows that the essential spectrum of Hb’00
equals [uf, o). q.ed.

In particular, H, has pure point spectrum in [0, uf) . Therefore,
(H, - A*)~! is a meromorphic function of A € %, . Now we may pro-
ceed in the same way as in the proof of Theorem 4 in [9). Fix b > 2 and
put

Gy, ) = xe ™y — (H, - )" (D" - ) xh(w, 4),  Im(A)>0.
This is a meromorphic function of A € £,. On R" x Y, it has the form
G, + G, where G, is smooth and square integrable and
e—iluw , U 2 b ,

e M,y + e C,(Ay, u<bh.

Here C(4), C,(A): Ker4 — KerA are linear operators which depend
meromorphically on 4 € £, . Let f; denote the characteristic function of
[b, o0) x Y. Put

jAu

Gy, ) =Gy, D+ f(e C, Dy + ™ Cyhw —e ™).

Then G isin C™(Z, S) and satisfies D°G = 4G . Moreover, it is easy
to see that C|(4) is invertible and

(4.17) F(y, ) =G(C,A) v, A).

The right-hand side provides the meromorphic continuation of F(y, A)
to Z,. Put

éo(lll, '1) = {

(4.18) CA)=CA)eC A", 1ieZ,.
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This is a linear operator in Ker.4 which is a meromorphic function of
A€ZX . For u€ w, u>0, there exist also linear operators

(4.19) : Tﬂ(A): Kerd —» &(n) & &(~un),
which depend meromorphically on 4 € £, such that, on R x Y, we have
F(y, ) =e ™y +e™Chy

(4.20) + o (- ) Ty, e,

>0
For A € R, the operator C(4) is regular and unitary, and equals the

“scattering matrix” for |4| < u,. Furthermore, the following functional
equations hold

(4.21) CA)C(-4)=1d, A€z,
(4.22) F(CA)w,-A)=F(w,A), weKerd.

There are also functional equations for the T, (cf. [16]).
Let ¢ € Ker(g — 1). Put
(4.23)
E(p,A)=F(¢p,A)+(1/A)DF(¢,A)=F(p—iyp,A), AeX,.

Then E(¢, A) satisfies
DE(¢, ) = AE($, ).
This is the generalized eigensection of & attached to ¢. If we apply

(4.20) to F(¢ — iy, A), it follows that, on R* x ¥, we have
(4.24)

E(g, ) =e "¢ —ivg) +eCQANp— iv$) +0(9,4), A€Z,
where @ is square integrable, and 6(¢, A, (u, -)) is orthogonal to Ker4.

If we compare (4.24) with the expansion of F(¢, A) + A"'DF (¢, A), we
obtain

(4.25) CA)y=—yC(), A€Z,,

which together with the functional equation (4.21) yields
Proposition 4.26. The operator C(0): KerA — Ker A is unitary and
satisfies
C0)*=1d and C(0)y = —yC(0).
Thus there exists always a distinguished unitary involution ¢ of Ker 4
—the on-shell scattering matrix C(0)—which anticommutes with y . This
involution is determined by the operator D.
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We remark that the on-shell scattering matrix C(0) is closely related to
the so-called limiting values of the extended I*-sections ¢ of § satisfying
D¢ = 0 (cf. [1, p. 58]). Let L, denote the +l-eigenspaces of C(0).
It follows from Proposition 4.26 that y switches L  and L_. Thus
L,®yL,_ =KerA is an orthogonal splitting of Ker 4. By the prescription
Dy, v,) = (yw,, ¥,), ¥, ¥, € Kerd, we get a canonical symplectic
structure on Ker A. Then an equivalent statement is that L . and L_
are Lagrangian subspaces of Ker4. Let ¢ € L_. It follows from (4.24)
that, on R" x Y, we have E(¢, 0) = 26+ 8 where 6 is square integrable.
Put ¢ = %E (¢, 0). Then ¢ is nonzero and satisfies Dy = 0. If we use
the notation of {1, p. 58], this means that ¢ is the limiting value of the
extended solution ¢ of D¢ = 0. From Lemma 8.5 it follows that every
limiting value arises in this way, that is, L_ is precisely the space of all
limiting values of L*-extended sections ¢ of S satisfying D =0.

Finally, we recall a special case of the MaaB-Selberg relations. We define
the constant term Ey(¢, 4) € C*(R" x Y, S) by

(4.27) Ey(¢, 1) =€ "(¢ — iy$) + €™ “CA)($ — ir9).
For a > 0 let x, denote the characteristic function of [a, 00) xY C Z.
Set
(4.28) E (¢, 0)=E(¢, 1) — 1,E$,2), AeZ.
By (4.24), E (¢, 4) 1s square integrable; its norm can be computed as
follows. Pick A’ € £, such that 4’ # A. Then

~ ~ 1 o~ ~ ,

(Ey($.2), Ey(9, X)) = —=UDE(#, 1), E($, 1))
—(E,(¢,4), DE (¢, 1))}.
Now applying Green’s formula together with (4.20) and taking the limit
A=A give :
~ 2 . . .
IE, (6, D' =4allg])” — {C(-D)C'(A) (¢ — iv4), ¢ — iv¢),
Ae(=nys 1y)s

where C’'(z) = (d/dz)C(z). This is a special case of the MaaB-Selberg
relations.

(4.29)

5. The large time asymptotic behavior

In this section we shall study the behavior of [, trE(x, x, t)dx as
t — oo. The main difficulty arises from the continuous spectrum of < ;
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in particular, if the continuous spectrum has no gap at zero. By Theorem
4.10, this case occurs iff Ker 4 # {0} .
We start with some auxiliary result. Let

Z - {f RoR|felL and/ /1)|(+|/1|)d/1<oo}.

We denote the trace norm of a trace class operator 7 in some Hilbert
space by ||T|; .

Lemma 5.1. Let T,, T, be selfadjoint operators in a Hilbert space.
Suppose that T, — T, is trace class. Then, for every f €%, f(T))— f(T,)
is trace class and

IA(T}) = AN, < F/ AF () dANT, = Ty,

For the proof see [26, p. 161]. Note that C;°(R) C & .
Proposition 5.2. Let ¢ € Cg" (R). Then ¢(Z)— ¢$(Z,) is trace class.
Proof. Let a € C;°(R). Then, by Theorem 3.7 and Lemma 5.1,

2 2
(5.3) a(.@’e—tg ) — a(@’oe—t%) is trace class for ¢ > 0.

Given ¢ € Cg" (R), choose ¢t > 0 such that supp¢ is contained in
—1/V2t, 1/4/2). Themap f(A) = Aexp —tA* is a diffeomorphism of the
interval (—1/v2¢, 1/v/21) onto the interval (—e /?/v2t, e”?/\/21).
Let a(u) = ¢(f ' (u)). Then a € Cy (R) with support contained in
. 2 2
(—e*/V2t, e /\/2t) . Moreover a(Pe™? )=¢(P) and o(Zye %)
= ¢(%Z,) . From (5.3) our result follows.
Corollary 5.4. Let a € C* (R) and suppose that o(i) =1 for |A| > C.
2 2
Then a(@’)e_tg - oz(.@’o)e*t‘@0 and o(D)De™ —a(Z))Dye =i are
trace class for t > 0.
2 2 .
Proof. Let $=1-a, ¢,(A) = d(A)e ™ and ¢,(2) = p(A)ae™™ , >
0. Then ¢,, ¢, € C;° (R) and, by Proposition 5.2, ¢,(Z) ~ ¢,(Z,), i =
1, 2, are trace class operators. Moreover
2 2 2 2
(@)™ —a(@)e™ P =TT — TN — (4(D) - $,(Z)).
which is of the trace class by Theorem 3.7. The second case is simi-
lar. q.e.d.
Proposition 5.5. Let o € C*(R). Suppose that there exist 0 < a < b
such that a(l) =0 for |A| <a and a(A) =1 for |A|-> b. Then there exist
C, ¢ >0 such that

(5.6) la(@)e ™ — a(Zye™ %, < Ce™
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and
(5.7) la(@)De™™ —a(@ )D,e” 19 o), < Ce™*

for t>1.
Proof. The function a canbe written as a = a_+a_ where a (1) =0
for A<a and a_(4) =0 for A > —a, a> 0. Suppose that & = a_. For

t>0 put
a(v/—logu)u', O<u<l,
¢, (u) = .
0 otherwise.
Then we have

(5.8) b)) =a(@)e™® and ¢, %) = a(@e D

Moreover, ¢, is smooth on R — {0} with support contained in (0, 1).
For ¢t >3, ¢, belongs to Cg (R) . Therefore

/ ¢, (A)(1 +]A))dA < 0o for > 3.
By Theorem 3.7, Lemma 5.1 and (5.8) we get

l(@)e™? — a(D)e™ ), < \/‘_

<cC / 1A, (2)] dA

Ad (M) dalle™® —e %,

for ¢ > 3. To estimate the integral we split it as f_ll + f:olo + [ . For the
first integral we obtain

/ 149, (l)|d1</ |6 (l)ld1<2/ ¢, ()| du.

If 2#0 and ¢ > 3, integration by parts gives
o 1 e d 3 iu
¢, (A)=——= ¢(ue du,
t ) ( i 1)3 _ )
which can be used to estimate the second and the third integrals. Putting
our estimates together, we get

| b < / 14,

By the definition of o, we have supp ¢, C (—¢, s) for some ¢ < 1. Hence

du.

3 ¢,(u)

/ Ad,(1)| da < Ce "%
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If « =a_, weset () = a_(—u) and then proceed as above. This

establishes (5.6). The proof of (5.7) is analogous. For a = a, we put

a(y/~Togu)r/—logu u’, O<u<l,
s={ ¢ .
otherwise.
If ¢t > 4, this function is three times continuously differentiable with
support contained in (0, 1), and (5.7) follows in the same way as above.
q.e.d.

If KerA # {0}, the continuous spectrum of & fills the whole real line.
Our next goal is to isolate the contribution to [, trE(x, x, t)dx given
by the continuous spectrum near zero.

Proposition 5.9. Let u, > 0 be the smallest positive eigenvalue of A.
Let o € C;°(R) be even and suppose that suppo C (—u,, p,). Further-
more, let . denote the absolutely continuous part of & . Then we have

TH(2,)Z, 6% - a(PPpe ™),
By 2
_ _% / a(A)re”™ Tr(yC(=A)C' (1)) dA
0

where C(A) is the scattering operator (4.18), C'(z) = (d/dz)C(z) and y
is defined by (1.1).

2
Proof. Let E*(x,y,t) be the kernel of a(Z, )P, e =, and

Eg(x, y,t) the kernel of a(@o)goe_tg"z. Let ¢,,---, ¢, be an or-
thonormal basis for Ker(o — 1), and E(¢j ,A), j=1,---,r, the corre-
sponding generalized eigensections. It follows from(4.11) that the kernel
EZ° has the following expansion in terms of the generalized eigensections:

(5.10)

EX(,p, )= 2= { /0 " a)ie (@, 4, x) o (G, %, ) di

j=1
My _t12 e
- [ aie £, -1, %) 0BG T ) dr)
0
A similar formula holds for the kernel Eg(x ,¥,1). Let

e(9;, 4, (u, ) = sin(Au)p;(v) + cos(Au)y4,(v), (u,y)eR" x V.
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Then
(5.11)
0 L[ [ S
Ea(x,y,z)=ﬁj2=;{/o a2V e(g;, 1, x) 0 €@, 1 M dA

123 —t2? -
- [" athie™ a9, -4, 1 0 6, T2
0

Let Z) = LZ(R+) ®Kerd C L2(R+ x Y, S) and # the orthogonal com-
plement of 7 in LZ(Z ,5). Let E (¢ s A= E‘O(qﬁj , A) be the generalized
eigensection E(¢ ;> A) truncated at level O (cf. (4.24)). Furthermore, let
9 € C;°(Z, S) and suppose that ¢ 1% . Then we have

(5.12)  (E(¢;,4), 0)=(E(¢;,2), 9} and (e(¢;,4), )=
Put

T=aZ,)9,. a(Z, )Qe
Using (5.10)-(5.12), we obtain

(513) (To,9) Z / are T (B, 2), o)

~(E(¢;, -4), 9)['} di.

Observe that E(¢ D 4) € #{. Hence, by continuity, (5.13) holds for all
@ € #Z. Let ?; J € N, be an orthonormal basis for # . Then (5.13)
implies

(5.14)
i(qu,-,(ﬂj)
- 2,: / a(ie” @, DI ~ 1E(@;, ~A)I} dA
Now let ¢ € C, (—R+),® Ker A. Then we get
(Tp, )= Z / a(Dhe ™ {(Ey(8;, 2), ) = KEo(8;, —2), o)
— (le(@;, ), o)° ~ (e(8;, —2), 9)")} dA,

where E,(¢;, 4) is the constant term of E(¢ ;» 4) defined by (4.27). Using
the unitarity of C(4) for A real together with(4.25), a direct computation
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shows that {(T¢, ¢) = 0. By (5.14) and (4.29) we are finally led to
TH7) = o [ atipe™ JX’;HC(—A)C’(A)(@ —i76,), 6, - ive))

—(CAC (=), — ive,), $; — ivd,)} dA.

Since ¢,,---, ¢,, 7¢,, -, v¢, form an orthonormal basis for Ker 4,
the sum equals
Tr(C(—A)C' (A)-Tr(CA)C' (=) +i Tr(yCA)C' (-2))—i Tr(yC(—A)C' (A)).
By the functional equation (4.21) we have
(5.15) C'(AC(=A) = C(A)C'(=A) = 0.

Therefore the first two traces cancel. If we employ (4.25) and (5.15) to
rewrite the remaining terms, we get the equality claimed by the proposi-
tion.

Corollary 5.16. Let p, > 0 be the smallest positive eigenvalue of A.
Then there exists ¢ >0 such that

] |
/ E(x, X, f)dx = _2Ln / 'ae” Te(yC(=A)C () dA + O ™)
Z 0

Jor t>1.

Proof. Let o € C;°(R) be an even real-valued function such that
suppo C (—4,, #,) and a(u) =1 for (u| <J. Put g =1-oa. Then, by
Proposition 3.11, we get

/ trE(x, x, )dx = Y a(d)he
z

J

2
—1i?

+ T2, D, e~ — (D) Dy D)

+THB@)De ™ — B(@)De D).

Note that the sum over the eigenvalues is finite. By Proposition 5.5, the
second trace on the right-hand side decays exponentially as  — oc. Then
we apply Proposition 5.9 to the first trace. For the asymptotic expansion
we may replace a by 1.

Corollary 5.17. Suppose that Ker A = {0}. Then there exist constants
C, ¢ > 0 such that

/trE(x,x,t)dx < Cce “, t> 1.
z
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Observe that, by (4.25), y commutes with C(—1)C’(1) . Therefore, the
integral on the right-hand side of the equality of Corollary 5.16 can be
rewritten as

ﬁ /0 . ze““z{Tr(C(—z)c’(m Ker(y—i))—Tr(C(=A)C' ()| Ker(y+i))} dA.

Furthermore, recall that C(4) is real analytic for 4 € (—u,, 4,). More-
over, from (4.25) and (5.15), it follows that
Tr(yC(=2)C'(3) = ~ Tr(yCA)C'(-2)).-

In particular, this function vanishes at A = 0. Using this observation, we
get an asymptotic expansion, as ¢ — oo, of the form

" 2 s
/ "2 Tr(rC(-A)C (W) dA~ S g kI
0 k=1
where
_1Tk/2+1) d*
T2 k! dix
Therefore, Corollary 5.16 leads to
Corollary 5.19. As t — oo, there exists an asymptotic expansion of the
form

(5.18) ¢ Tr(yC(~4)C'(A))],p-

1 X —(ks2)2
/ZtrE(x,x,t)dx~—§;kz_;ckt ,

where the coefficients c, are given by (5.18).

Remark. In contrast to the asymptotic expansion at ¢ = 0, the coeffi-
cients ¢, are nonlocal and determined by global properties of the contin-
uous spectrum at 1 =0.

6. Eta invariants for manifolds with cylindrical ends

We are now ready to define the eta function of 2. Let a > 0. For
Re(s) > n put
a _ 1 ¢ (s—1)/2
(6.1) nis,2)= WTI)/Z)/o t /ZtrE(x,x, t)ydxdt.
By Proposition 3.12, the integral is absolutely convergent in the half-plane
Re(s) > n and admits a meromorphic continuation to the whole complex
plane. Similarly, for Re(s) < 2, we put

1

_ ® (s—1)/2
62) 1,5, D)= m/ t /ZtrE(x,x,t)dxdt.
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By Corollary 5.19, the t-integral is absolutely convergent for Re(s) < 2
and admits also a meromorphic continuation to C. Now observe that the
meromorphic function 7°(s, 2)+n,(s, Z) is independent of a > 0 and,
therefore, we may define the eta function of & by

(6.3) (s, D) =1"(s, D) + 1,5, D).

Then 7(s, &) is a meromorphic function with simple polesat s = j, j €
Z. The poles at s = j, j > 2, may not be given as the integral of a local
density.

Remark. In view of Proposition 3.11 we may regard 7n(s, ) also as
a relative eta function #(s; &, 9) attached to &', .

If n(s, ) isregular at s = 0, we define the eta invariant of & to be
n1(0, Z). There are two special cases:

(a) Kerd = {0}. Then [,trE(x,x,t)dx decays exponentially as
t— oo, and 7(s, Z) can be defined in the half-plane Re(s) > n by

64) (s, D)= m/ooo t(s_l)/z/ztrE(x,x, ) dxdt.

(b) Suppose that D is a compatible Dirac-type operator and dim Z is
odd. By Proposition 3.12, we have [, trE(x, x, t)dx = o'?) as t —
0, and 7n(s, &) can be defined by formula (6.4) in the strip 2 > Re(s) >
—2. In particular, n(s, &) is regular at s = 0, and the eta invariant of
9 is given by

6.5) 70, 9) = %/0 z"/z/ztrE(x,x, f)dxdt.

The case where (a) and (b) are both satisfied has been studied also by
Klimek and Wojciechowski [19]. In this paper we shall not attempt to
answer the question of the regularity of #7(s, &) at s = 0 in general.
Next we derive a variational formula for compactly supported perturba-
tions. Let D, be a smooth one-parameter family of first-order elliptic
differential operators on Z which satisfies the same assumptions as in §2.
In particular, D, = y(3/8u+A) on R xY . Let D, =dD,/dv.

. g .
Lemma 6.6. For t > 0, the operator D e %y s trace class.

Proof. Let Ux be the operator defined in the proof of Theorem 3.7.
Then we may write

. _ 2 . _ 2 _ _ 2
D y Dve( ‘2, Ux Lo Ul o e( 122, .

In the course of the proof of Theorem 3.7 we showed that U, oexp —%91,2
is a Hilbert-Schmidt operator. By assumption, Dv =0on RFxY. If
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we use (3.5), it is easy to see that D exp -1 UZ ) U)(—1 is Hilbert-Schmidt
too. q.e.d. :

Let E (x, y, t) be the kernel of &, exp —t@f . From (3.10), it follows
easily that [, trE, (x, x, t)dx is a smooth function of v. If we employ
Proposition 3.11 and then proceed as in the proof of Proposition 2.1, we
obtain

Lemma 6.7. For t > 0, we have

i} a .
%/ZtrEv(x,x, tydx = (1 +2ta) Tr(D,e

To continue we have to determine the asymptotic behavior of
L gt . .
Tr(D, e ’gv) as t - 0 and ¢ — oo. Since D, = 0 on R' x Y, the
small time asymptotic behavior is reduced to the compact case. Using
(3.5) and Lemma 1.7.7 of [12], we get an asymptotic expansion of the
form

s~ — j—n—1)/2
(6.8) Tr(D,e™ ) ~ 3 ¢, (D) "7V,
j=0

9} )

as t — 0.

Now we come to the large time asymptotic behavior. Let P, be the
orthogonal projection of L2(Z ,S) onto KerZ, . Since 0 may not be an
isolated point of the spectrum of &, , the following lemma is nontrivial.

Lemma 6.9. Suppose that dim(KerZ,) is constant. Then P, depends
smoothly on v.

Proof. For b > 0, let H,(v) be the operator which represents the
quadratic form (4.15) defined by D,. By Lemma 4.16, H,(v) has pure
point spectrum in [0, uf) where u, > 0 is the smallest positive eigenvalue
of 4. By Proposition 8.7, we obtain Ker H,(v) = Kerr,@v2 . Moreover, it

is clear that Kerr,@v2 = KerY, . Using the definition of H,(v), it is easy
to see that H,(v) depends smoothly on v . Since dim(Ker H(v)) is con-
stant and 0 is an isolated point in the spectrum of H,(v), the orthogonal
projection of #, onto Ker H,(v) depends smoothly on v . Now observe
that KerZ, is contained in %, and the orthogonal complement of 7,
in L2(Z , ) is independent of v . This proves our claim. q.e.d.

Assume that dim(KerZ)) is constant. Then P, is smooth in v . Since
D,P =0, we have

(6.10) D,P,=-D,P,
To begin with we consider the contribution of the eigenvalues first. Let
91,’ 4 be the restriction of & to the subspace of L2(Z , 3) spanned by
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the eigensections of Z, . Since P, has finite rank and ||D, exp —tZ, 2 all <

Ce™, it follows from (6.10) that | Tr(D, exp —t@vz ) <Ce “ for some
constants C, ¢ > 0.
To estimate the contribution of the continuous spectrum, we pick o €

C, (R) as in Proposition 5.9. Put 8 =1-a. Since B(u) =0 for |u| <

0, the spectral theorem implies that ||8(Z)exp —t.@zll <e® t>0.

Hence, for t > 1,

—(t— 1)9

(6.11) ITr(Dvﬂ(%)e_@"z)l < IIDve_g”zlll 18(Z,)e I<ce™

Let &, (v) denote the absolutely continuous part of &, , and use (4.11)

to construct the kernel of Dva(gac(v)) exp — Qac(v)z . It is given by an
expression similar to (5.10). By means of this kernel, we get

Tr(D, (2, (v)) 2y
=1z Z / e UDE, (6, 1), E,(4;, 1)
(Dva(¢j’ _A')’ Ev(¢ja —A»}d)"

where E, (¢, A) denotes the generalized eigensection of &, attached to
¢ € Ker(g — 1). Since dim(Ker H,(v)) is constant, (H,(v) — /12)—1 is
smooth for |A| sufficiently small. From the construction of the analytic
continuation of E (¢,4), A € Z,, it follows that E (¢, 1) depends
smoothly on v for |4| sufficiently small. More precisely, for each v, there
exists 6 > 0 such that, for |A| <d, E (¢, A) is a smooth function of v
for |v —y,| < &. Differentiating the equation D E (¢, 1) = AE (¢, 1)
with respect to v gives

Ev(qﬁ,/l):—(Dv-—A);—va(qﬁ,/l), 14| < @.

If we use Green’s formula together with (4.20) and (4.24), we get
. 0 . .
B,5,(6 B B, (8 Dy, = (125C,006 - i28), €, ()6 = 199))
+0(e™ ™)

for some ¢ > 0. Choose « such that suppa C (—9, d). Then
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)
=_21; /0 . a(A)e” {Tr(y(C( )5 Co@)

Te(D, (D, (v))e =

+Tr(yC, (l) C( 4))

—iTr(C, (- /1)

5 Co(d)

—iTr(C, (/1) —~C,(- z))} da.

The functional equation (4.21) implies

(6.12) (%cv(z)) C,(=A) + C,(%) ( C (~A)) = 0.

Therefore, the right-hand side of the equation above (6.12) equals

__21;/0”1 (e | T (YC( 55 € (1)>

Since Tr(yC,(—4)0C,(4)/0v) is an analytic function near 4 = 0, we get

an asymptotic expansion
: s 9 e~ —i)2
Tr(D,e ™) ~ Z bt
as ¢t — oo, where the first coefficient is given by

b, = —Z Tr (yC (0) C (0))

Put
1 (s—1)/2 -
E(s, D,) = ——F((s+1)/2)/ D2 Tr(D, e~ %) dt,
and
I SR R )Y, S .
&(s,9,) = TGT 1)/2)/1 t Tr(D,e” ~*)dt,

Re(s) > n

Re(s) < 0.

Then &,(s, Z,) and &,(s, Z,) admit meromorphic continuations to the
whole complex plane. Summarizing our results, we have proved
Proposition 6.13. Let D, be a smooth one-parameter family of first-
order differential operators on Z satisfying the above assumptions. Suppose
that dim(Ker9,) is constant. Then n(s, Z,,) is differentiable with respect

to v and



ETA INVARIANTS AND MANIFOLDS WITH BOUNDARY 355

Zn(s, B,) = ~5¢,(5, ) + &5, 2,)).

Corollary 6.14. Suppose that dim(Ker<Z,) is constant. Then the resi-
due of n(s, Z,) at s =0 is independent of v .

Since D, has continuous spectrum, we cannot proceed as in the proof of
Corollary 2.12 to eliminate the condition on KerY, . Eigenvalues embed-
ded into the continuous spectrum are usually unstable under perturbations.
We have to understand how this is compensated by the continuous spec-
trum. We claim without proof that Corollary 6.14 remains true without
any assumption on Ker<Z, .

Corollary 6.15. Assume that dim(KerZ)) is constant, and n(s, Z,)
is regular at s =0. Then

210, 9) = -, (D,) + = TH1C, 05,000,

where c,(D,) is the nth coefficient in the asymptotic expansion (6.8).
Using (4.25) and (6.12), we get

Tr (yCv(O);—va(O)> = 2iTr(Cv(0)%Cv(0)| Ker(y — i)).

Comparing the variational formulas given in Corollary 2.9, Theorem 2.21,
"~ and Corollary 6.15 thus leads to
Proposition 6.16. Let D, be a smooth one-parameter family of compat-
ible Dirac-type operators as above. Suppose that dim(Ker<,) is constant.
Let 7, = C,(0). Then n(0, (D,), ) and n(0, Z,) are smooth functions
of v and ’
]
v
If the kernel of &, is not constant, n(O, 2,) will have discontinu-
ities which we are going to study next. Let 7 > 0 be given. It follows
from (3.10) and Proposition 3.12 that fT 172 J;trE(x, x, t)dxdt isa
smooth function of v. Now consider the integral from T to ov. Since
we vary &, on a compact set, the constants occurring on the right-hand
side of (3.5) can be chosen to be uniform for v € (—¢, €). Thus

(0, (D))— 510, Z,).

2 2
(6.17) le™ —e™%, < C,

for some constant C, > 0 and |v| < ¢. Let # be as in (6.11). Then
(6.17) implies that
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[o o] 2
/T P THD, (D, ) ~ D B(Dy)e” %) d

depends smoothly on v .

Next we have to consider the contribution of the continuous spectrum
near zero. It follows from Proposition 5.9 that this contribution is given
by

1 # !
(6.18) ~5- /0 a(A)sign A Tr(yC,(—A)C,(A)) dA,

where suppa is contained in (—x,, 4,).

Lemma 6.19. There exists ¢ > 0 such that Tr(yC,(-A)C,(A)) is a
smooth function of v for |v|<e, |A| <e.

Proof. Using the functional equation (4.21) we see that the singular-
ities of the meromorphic matrix-valued function C,(—z)C,(z) are sim-
ple poles with residues of the form —mId, m € N. Since Tr(y) = 0,
Tr(yC, (—z)C; (z)) is an entire function of z. Let I C C be a circle with
center at the origin such that all poles # 0 of C0(~Z)C(')(z) are contained
in the domain exterior to I'. From the construction of the analytic con-
tinuation of the generalized eigenfunctions it follows that Cv(—z)C{)(z)
will be a smooth functionof z €T and v, |v| <&, for ¢ > 0 sufficiently
small. Our claim is thus obtained by Cauchy’s theorem. q.e.d.

If we choose a with support sufficiently small, then by Lemma 6.19,
(6.18) is a smooth function of v for |v| < &. Combining our results, we
see that the only possible discontinuities of #(0, &) may arise from the
small eigenvalues. There are two possibilities: either eigenvalues disappear
and become resonances, i.e., poles of the scattering matrix, or they remain
eigenvalues but cross zero. In the former case eigenvalues must disappear
in pairs of positive and negative eigenvalues. Indeed, the definition of the
generalized eigenfunctions immediately implies that the scattering matrix
satisfies the following relation:

CA)=C(-1), Aie€Z,.

Thus, the poles of C(A) appearin pairs {z, —Z} . Hence, the disappearing
eigenvalues do not cause discontinuities. Next observe that by (4.25),
Cv(O)' has exactly }dim(Ker4) eigenvalues equal to 1. Therefore, by
Proposition 8.10, we have dimKer((D,),) = dimker(Z,) + 3 dimKer(4) .
This implies

Proposition 6.20. Let D, be a smooth one-parameter family of compat-
ible Dirac-type operators satisfying the properties above. Then n(0, (D,).)—
n(0, Z,) is a continuous function of v .
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7. Convergence results for eta invariants

Throughout this section we shall assume that D is a compatible Dirac-
type operator on Z satisfying the above assumptions. Then the various
eta invariants are well defined. Let ¢ be a unitary involution of Ker A as

n (1.5). Our main purpose is to relate the eta invariant #(0, D ) to the
eta invariant 7(0, &) . If Ker 4 = {0}, this problem was studied in [11].

For a > 0, consider the restriction of D(a) of D to the compact
manifold M, = MU([0, a]xY). By Proposition 2.16, we have (0, D_) =
n(0, D(a),), a > 0. We shall now study the behavior of 7(0, D(a),) as
a — oo. Since D is a compatible Dirac-type operator, 7(0, D(a),) is
given by (1.30). Then we may write

_ va -12 —tD(a)?
o n(0, D(a),) = \/E/o t " Tr(D(a),e Ydt

1 /°° —1/2 —tD(a)?
+ — t Tr(D(a) e *)dt.
77 ) (D(@),e™™" ")

The first integral can be treated in essentially the same way as in §7 of [11].
For our purpose we shall use a slightly different approach. Let ¢, o be the
kernel (1.13), and eg the restriction of the heat kernel K of 8/0t+ 2 2
to M, . We change coordinates so that M, = M U ([-a, 0] x Y) where
the boundary of M is identified with {—a} x Y. Let ¢,, ¢,, ¥,, ¥, be
the functions defined by (1.14) and put

6i(w) = ¢(ufa) and yi(w) =y w/a), i=1,2
Again we regard these functions as functions on the cylinder [-a, 0]x Y,
and then extend them to M in the obvious way. Put

(12 2= g, Wi+ el

This is the parametrix for the kernel K: of exp —tD(a)
obtained from ef; by a convergent series of the form

2

g’

and K. is

1
where the notation is similar to (1.16). By (1.13) and (3.5), it is easy to
see that, for m € Z, there exist C,, C,, C; > 0 such that

(7.3)  IDE(KE(x, ¥, 0) —€l(x, v, )], Il < C exp(Cyt — Cy(a® /1))
fork<m, xeM, te R'. Using (3.10) and following the proof of

Proposition 3.12, we immediately obtain that

(7.4) ‘/ trE(x, x, 1)dx| < Ct'/?
Ma
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for 0 <t <1 and some constant C > 0 independent of a. The estimate
(7.4) together with (7.3) implies that the first integral on the right-hand
side of (7.1) equals

va
(7.5) L/ t*I/Z/ trE(x, x, t)dxdt + 0(exp(—C4a3/2))
VT Jo M,

for some C, >0 and a — 0.
Proposition 7.6. We have

lim L/\/Et_m/ trE(x, x, t)dxdt=n(0,2).
vz Jo i,

a—oo

Proof. 1t follows from Corollary 5.19 that

. 1 va —1/2
lim — t trE(x, x, t)dxdt =n(0, 2),
0 z

a—oc T

so that it is sufficient to prove that
lim L/ﬁt“/z/ trE((u, ), (u,y), )dydu| dt = 0.
“—’°°\/5 0 [a,o0)x¥ A

Let b > 0. Note that the support of the right-hand side of (3.10) is
contained in M = M,,. Hence, by (3.5),

a—o0

b
(7.7) lim t_1/2/ trE(x,x, t)dxdt=0.
0 [a,00) XY :

Pick a € C;°(R) such that o(u) = o(-u), 0<a <1, a(u) =1 for ju| <
u,/4 and ou) =0 for |u| > pu,/2. Set f=1—a. Let E_ (resp. Eﬂ)

denote the kernel of a(2)Z exp —t< 2 (resp. B (2)<D exp 1D 2) . Then
E=E,+E;. Let x, denote the characteristic function of [a, o) xY
in Z . By following the proof of Proposition 3.11, one can show that

/ trEﬂ(x, x,t)dx

[a,o0)xY

(7.8) :/ X, WEg(x, x, H)dx
z

= Tr(x,(B(@)Ze™ - B(DpDpe ™).
Let 1 < b < +/a. Then Proposition 5.5 implies

Y
/ t / trEﬂ(x, x, t)ydx
b [a,o0)xY

dt < C/ 71207 4y
b
(7.9 —eh

SCW.
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Now we turn to the kernel E_ . First, observe that
—2? —_—
Ea('x’ y’ t)= Z a(l])l]e J¢J(x)®¢1(y)+EZc(x’ y’t)’
I4;l<u,/2

where E,  is the absolutely continuous part of E_, 4 ; Tuns over the eigen-
values of &, and ¢ ; are the corresponding orthonormalized eigensec-
tions. By Proposition 4.7, the contribution of the discrete part to the
integral in question can be estimated by

0o 2
Y |xj|/ 21 dt/ 19, (u, y)Pdydu < Ce™.
0 [a,c0)xY

11j|<ﬂ1/2

Since the kernel E-° is given by (5.10), by means of this formula we obtain

[ wE (9, ,9), 0dy
LS e
(7.10) = 47[; /0 (A)he

x /Y (IE@, . 4, (u, YOI ~ |E@;, —A, (, ¥)I’}dy da.

Now we use (4.24) to compute the integral over Y . Note that ¢ ;= iyd)j
belongs to the +i-eigenspace of y and, in view of (4.25), C(l)(d)j — iyd)j)
belongs to the —i-eigenspace of y. Hence d)j — iyd; is orthogonal to
C(A)(¢ I iyd)j) . Moreover, recalling that C(1) is unitary for 4 real, we
thus get

/Y NE@. A, (u, D7 dy = 41| + /Y 16(6, 4, (u, Y)I dy.
From (4.20) it follows that

/Y 1066, 4, (u, ¥)I2dy < Cexp(—21/i — u).

Applying this to (7.10) yields

va
/ 12
b

Putting our estimates together implies that there exist C, ¢ > 0 such that

va
/ 12
b

for 0 < b < /a. Combined with (7.7) this proves our claim. g.e.d.

dt < Ce ™,

/ trE. (x, x, f)dx
[a,o0)xY

dt<Cle™+e )

/ trE(x,x,t)dx
[a,oc0)xY
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It remains to study the second integral in (7.1). First note that, for
4 > 0, one has
o0 2 o0 2 2
(7.11) / ) e dx <27V
va pa'lt
Let A; = A;(a) run over the eigenvalues of D(a),. Let 0 < x < 1/4.
Then we may split the trace as follows:

2

ae_’D(a)f’)z Z + }: /lje_df.

—x —x
|l,-|Za |"j|<a

(7.12) Tr(D(a)

From (7.11) it follows that

o0 _ _ 2 _ 1/2—2x _ 2
(7.13) / S e Hdr<ce™ Tre @), ax1,
va .
1,1z

(cf. (7.2) in {11]). Using Theorem 4.1 of [11] (which holds without any re-
striction on A), we see that Tr(exp —D(a)i) can be estimated by
CVol(M,) < C,a where C; > 0 is independent of a. Hence (7.13)
can be estimated by C,a exp(—al/ 2_2") which tends to zero as a — oo.
It remains to study the contribution made by the eigenvalues A ; which

satisfy lij] <a ", If Ker4 = {0} it was proved in [11, Theorem 6.1}, that
the nonzero spectrum of D(a); has a positive lower bound as a — oo.

In this case it follows from our estimates that #(0, D(a)H_) converges
ton(0, Z) as a — oo. Combining this with Proposition 2.16 we thus
obtain

(7.14) n(0, D(a)y ) =n(0, 2).

8. The small eigenvalues

Suppose that Ker 4 # 0. The scattering matrix C(A) acts in this vector
space and, for A = 0, we get a unitary involution 7 = C(0) of Ker4
which anticommutes with y (cf. Proposition 4.26). In this section we
shall use 7 to define the boundary conditions. Thus

(8.1) L, =Ker(C(0) ¥ 1d).

We shall employ the following notation. Let P, denote the orthogonal
projection of Ker 4 onto L, . Let ¢ T j € N, be an orthonormal basis for

~

Ran(II,) consisting of the eigensections of 4 with eigenvalues u ;> 0.
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Our main purpose is to investigate the small eigenvalues of D(a), . More
precisely, we pick 0 < x < 1 and study the eigenvalues 4 of D(a), which
satisfy |A] < a~". We shall employ the selfadjoint operator H, defined
by the quadratic form (4.15). Recall that H, has pure point spectrum in
[0, ,uf). The description of the spectrum of H, in [0, ,uf) is analogous
to Theorem 5 in [9]. Here we shall discuss only the kernel of H, . For this
purpose we need some preparation. If we put 4 =0 in (5.15), it follows
that

(8.2) C'(0)C(0) = C(0)C'(0),

and, therefore, Ker 4 admits a decomposition into common eigenspaces
of C(0), C'(0). Given b € R, put

(8.3) V,={¢cKerd|C0)p=—¢, C(0)¢=2ibg}.

Lemma 84. If V, # {0}, then b <O0.

Proof. Suppose that V, # {0} and b > 0. Let ¢ € V,, ¢ # 0.
Consider the generalized eigensection E(y¢, A) of & attached to y¢ €
L, . Let Eb(yqb, A) be the truncated section (4.28). Employing (4.29), we
get

IE,(v¢, 0)I° = 4b]l¢|I” — {{C(O)C(0) (v + i9) , v + i)
= 4(b-b)¢|" =0.

But Eb(yqb, 0) # 0, a contradiction. q.e.d.

Lemma8.5. Let 9 € C*(Z, S) be asolution of D2¢ = 0 and suppose
that, on R x Y, ¢ takes the form ¢ = ¢ + ¢, where ¢, € L? and
¢ e Kerd. Then ¢ satisfies C(0)p = ¢.

Proof. Since ¢, is square integrable and satisfies Dz(p1 =0, we have

(8.6) o =D ce e,

u;>0

which implies Dp =0 on R" x Y. If we apply Green’s formula to M 2
then Dp =0 on Z. Thus ¢ € Ker4 is the limiting value of ¢ in the
sense of [1]. We may write ¢ as ¢ = ¢, + ¢_ where C(0)p, = +¢, .
Now consider the generalized eigensection E(y¢_, A) of & attached to
yp_€L,_.Put y= %E(yqb_ , 0). Then y is a smooth section of § and
satisfies Dy = 0. From (4.24) it follows that,on R x Y, w =y¢_+86,

8 € L*. Moreover, @ is smooth and satisfies [|0(«, y)|| < Ce . Using



362 WERNER MULLER

Green’s formula and (8.6),.we get
0=(Dg, ¥}, = /Y(w(a, ¥), w(@, y)ydy + {9, Dy)y

2 -
=lyé_II" + O(e™™).

Hence ¢ =0. ’

Proposition 8.7. For b >0, we have Ker H, = KerZ 2

Proof. If ¢ € L2(Z , S) satisfies D2¢ =0, then,on R"xY, ¢ hasan
expansion of the form (8.6). This expansion shows that ¢ belongs to the
domain of H, and satisfies H,@ = 0. To establish an equality, consider
¢ € KerH, . From the description of the domain of H, given in §4, it
follows that ¢ is smooth in the complement of {b} x ¥ and therefore
satisfies D2¢ =0. Hence, on R x Y, ¢ can be written as follows

0 =9+ Z e—ﬂj“¢j

uj>0

where
2i(u - b)¢, u<hb,

u,y)=
P01, ¥) { 0, Wb,
for some ¢ € Ker4. Let x, be the characteristic function of [b, co) x ¥

and set

¢ =0+ x,2i(u—b)o.
Then ¢ € C*®(Z,S), D*¢ =0 and, on R" x Y, we have
(8.8) ¢ =2i(u—b)p+9,

where ¢, € L*. We may write ¢ as ¢ = ¢, +¢_ where C(0)p, = £, .
Let F(¢, , A) be the corresponding generalized eigensection and put

w=0+ibF(¢,,0)+ —%F(d)_ Ao
Then v € C*(Z, S), D*v =0 and, on R* x Y, we have
(8.9) v =2iud, + C'(0)p_ ~ 2ibp_+y,,
where ¥, € L?. Now consider Dy . By (8.9), we obtain Dy = 2iy¢  +
Dy,, Dy, € L? on R* x Y, and Lemma 8.5 implies y$, = 0. Since

C'(0)¢_ —2ib¢_ belongs to the —1-eigenspace of C(0), Lemma 8.5 im-

plies also that C'(0)¢_ = 2ib¢ . Thus ¢ = ¢_ is contained in V,. By
Lemma 8.4, ¢ = 0 and, therefore, ¢ = ¢ is square integrable and satisfies

D2¢ =0. q.e.d.
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Now we can start the investigation of the small eigenvalues. First, con-
sider the eigenvalue A= 0. Let ¢ € KerD(a),. On [0, a]xY, ¢ satisfies
y(8/0u+ A)p = 0 and, therefore, it can be written in the form

_ ~
p=9+3 ce s,
#;>0

where ¢ € L_. We may use this expansion to extend ¢ to a smooth
section ¢ on Z satisfying Dy = 0. Let E(¢,A) be the generalized
eigensection attached to ¢. In view of (4.24), ¢ — 1E(¢, 0) is square
integrable and D(¢ ~ 1E(¢, 0)) =0, ie., § — 1E(¢, 0) € KerZ . This
proves
Proposition 8.10. There is a natural isomorphism
Ker D(a), 2 Ker & @ Ker(C(0) — 1d).

Now suppose that A4, |A| < u,, is an eigenvalue of D(a), with eigen-
section ¢ . On [0, a] x Y, ¢ has an expansion of the form

Au iAu
y,+e vy,

+ iaj(,l) { (ch (,/uf — 2 u— a))
j=1

B (- .
uj—ﬁs ( W — A (u a0)¢,

- _\/'ﬂzi—_FSh (\/ﬂjz- —'12(14 - a)) ?d’j}
7 -

where y, € Ker(y — i), y, € Ker(y + i) and

p=e

(8.11)

—2ika

(8.12) P y,=-e P y,.
Set

_—iku iAu
(8.13) . po=¢€ Ty te v,

We call ¢, the constant term of ¢ .

Proposition 8.14. There exist § > 0, a, > 0, such that, for a > a,,
any eigensection ¢ # 0 of D(a), with eigenvalue A satisfying 0 < |A| <
has nonvanishing constant term ¢, .

Proof. Let ¢ be an eigensection of D(a), with eigenvalue 4, 0 < |4} <
4,/2 . Suppose that the constant term ¢, of ¢ vanishes, ie., ¥, =y, =0
in (8.11). We assume that |@|| = 1. Then there is a constant C > 0,
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independent of a, such that Zj |aj(/1)lze" % < C where a (4) are the
coefficients occurring in (8.11). We extend ¢ to a section ¢ of S over
Z by :

y p(x), xXeEM,
g(x) = { —p;(u—a) _
>ae é;, x=(u,y)€la,x)xY.

Then ¢ is continuous on Z and smooth on Z — ({a} x Y). Moreover, it
is easy to see that ¢ belongs to Hb1 (Z,S) for every b > 0 and satisfies
¢l — 1] < Ce . By Proposition 8.7, any y € KerH, is smooth,
satisfies Dy = 0, and takes the form (8.6) on R* x Y. In particular, w
satisfies I1° (w(u, -) =0 for u > 0. Using Green’s formula, we get

<¢a W)Ma =2‘_1<D¢’ W)Ma 21_1«0’ DW)Ma =0.

Furthermore, in consequence of the definition of @,
—,a

. > - € —ca
x), w(x)ydx = ab.—— < Ce
[, 66, v Yab

for some constants C, ¢ > 0. Hence, ¢ satisfies

(8.15) (¢, v} < Cllylle”

Now we shall apply the mini-max principle. Recall that by the second
representation theorem for quadratic forms (Theorem 2.23 of {17, VI,

§2.6]), the domain of Hbl/2 equals H; (Z,S). Let

ca

for € Ker H,.

1/2 2
12y

2
veriz,s) vl
vl KerH,

w =

It follows from Lemma 4.16 that 0 < w < /tf . Using again Theorem 2.23
of [17, VI, §2.6], we get

/2 . - 2
(8.16) 1H#,311° = 1DgII° = 1D, = 4.

Let n, denote the orthogonal projection of #, onto KerH,. Put ¢ =
¢ — n,¢ . Employing (8.15) and (8.16) yields

1191~ 1] < Ce™ and |||H,”p|* - 4% < Ce™*.

This implies @ < [|[H,*¢[1*/19]1> < (1+ Ce™**)A* and, therefore, we can
find a, > 0 such that A2 > w/2 for a>a,. Put § = (w/2)1/2. g.e.d.
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Proposition 8.14 shows that, for a > a,, the eigensections of D(a),
with sufficiently small nonzero eigenvalues are determined by their con-
stant terms.. We shall now investigate the constant terms more closely.
Pick 6 > 0 and g, > 0 as in Proposition 8.14. Suppose that A with
0 < |A| < ¢ is an eigenvalue of D(a),, a > q,, and ¢ an eigensection for
A normalized by ||¢|l = 1. Then the constant term (8.13) of ¢ does not
vanish. We may write ¥, as y, = ¢, — iy¢, for a uniquely determined
¢, €L, . Put

G=9—-E(¢,,A).
Then G is smooth and satisfies DG = AG. On [0, a] x Y, it has an
expansion of the form

G ="y~ CDw,)

+3 {cj(/l) exp(y/ 12 — Au) + d,(A) exp(—/ ] — Azu)} $;

#,—>0
[2_ 2
B+ 5 — 4 2 .2
+ z:o{cj(l)—l——— exp(y/ #; — A"u)
uj>

2 2
W, —\Ju;—4
+ d;() T ——exp—\/ 1 —Azu)} v9;-

The coefficients ¢;(4) and d j(l) are determined by the expansions (8.11)
and (4.20). From (8.11), (4.20), and (4.29), it follows that these coeffi-
cients satisfy 3 |aj(l)|2e"f” < C and [b;(4)] < C for some constants
C > 0 independent of a and j. By Green’s formula, we obtain

0= (DG, Gy, = (G. DGy, = [ (46(a. 7). Gla, y)dy
= —ilCw, — vyl + 0™,
and therefore
(8.17) @y, —wyl* <™.
Let I: L_ — Ker(y — i) be defined by I(¢) = ¢ — iy¢. Put
SA)=P_oC(A)ol, AeX,.

Observe that there exists a unique ¢ € L_ such that ¥, = ¢ —iy¢$. Then,
together with (8.12), inequality (8.17) can be rewritten as

(8.18) ¥ S(2)p + ¢I* < e
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Lemma 8.19. The operator S(A): L_— L_ isunitary for A€(—p,, u,).

This'is an easy consequence of the unitarity of C(4) for A € (—y,, u,).

Since S(4) is unitary, the eigenvalues of the linear operator e?ts L)+
Id are of the form e + 1 , B eR. Let 0</{ be the smallest eigenvalue
of (*™S(2) +1d)(e**S(4) +1d)* . Then

£ — min 1€7SG) +1d)w|”
veL i

which combined with (8.18) implies that { < e~“*. Hence, e**4S(A) has
an eigenvalue ¢’ satisfying |1 + cos@| < e™**, and there exists k € Z
such that |nk — 8} < e™°“. Let m(4) be the multiplicity of the eigen-
value A. By Proposition 8.14, we get m(4) linearly independent vectors
By s qﬁm(l) € L_ which satisfy (8.18). Summarizing, we arrive at

Proposition 8.20. Let J, a, be chosen according to Proposition 8.14.
Let a > a, and suppose that A, 0 < |A| < d, is an eigenvalue of D(a),
of multiplicity m. Then there exist m eigenvalues 'l st e’om of
e*™S(3) such that

€% +1y<e™, j=1,--,m
Next we shall study the zeros of det(eziMS(A) +Id) near A = 0. By
(8.2), C'(0) preserves the eigenspace decomposition (8.1). Let C’ (0)

denote the restriction of C'(0) to L_. Then S'(0) = C’_(0) and we have

(8.21) S(A) = —Id+5'(0)4 + O(A%).

In view of Lemma 8.19, we can apply Rellich’s Theorem [4, p. 142] to
study S(4). By choosing § > 0 sufficiently small, the punctured disc
0 < |z| < J consists of simple points of §(z) only. Then there exist
p < r=dim L_ mutually distinct eigenvalues of S(z):

vi(2)=~l+a; z+a,2 +-- |2 < 4.
The eigenprojectors Pj;(z) associated to z/j(z) are also holomorphic at
z =0, and S(z) takes the form

2
S(z) = Zyj(z)Pj(z), 0<|z| <d.
Jj=1
We shall obtain a sequence v,(z), - , uy(z) by repeating the eigenvalues

according to their multiplicity. Let y/j(z) be the eigenvector correspond-
ing to v;(z). We may assume that y/j(z) is holomorphic at z = 0.
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Differentiating the equation S(z)y;(z) =v j(z)n//j(z) , We obtain

S'(0)w;(0) + S(O)w}(0) = v}(0)y;(0) +v,(O)w}(0).
Since $(0) = —1Id and »;(0) = -1, we have

(8.22) S'©)w;(0) = ¥;(0)y(0).
Recall that S(4) is unitary for A € (—u,, ;). Therefore, it follows that
there exist real analytic real-valued functions S (A of Ae(~d,d) such

that v,(1) = ¥ | 1€ (-5, 6),and ,(0) = 0. Moreover, each f,(1)
has an expansion of the form

(8.23) By =apitay’+--, A<
From (8.22), it follows that the eigenvalues of S'(0) are equal to
! . .
Vj(0)=laj1, j=1,---,r
Fix ,, 0<J, <4, and let
(8.24) m;=_max_|B(4).

I Ae(=4,,8)
Then the function f(1) = 2ai+ 8 () is strictly increasing for |4 <4,
azm,;. Choose q;, > max(mj, 511/"). For a > a, and k € Z, there
exists at most one solution p(j ) of

(8.25) 2ah + B;(%) = 2k, 1A <a™".
Let k; J max(@) be the maximal k for which (8.25) has a solution.
Then
(8.26) K maxl S @ /n+C<a' ™™ fora>a,
Furthermore, if p(J) is a solution of (8.25) for some k € Z, then
(8.27) p = nk/(a +a;/2) + 0@ "),
which together with (8.26) implies that
(8.28) p) = nk fa+ 0@ "),
Lemma 8.29. Let a > a, and \k| < k; . (a). Then the solutions p(’)

and p(’ ) of (8.25) exist and satisfjf

1+2x
Jor some C > 0 independent Of a.
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This can be easily derived from (8.23) and (8.27).
Given a > 0, we introduce

(8.30)  Q(a)={p € R—{0} | det(¢’S(p) +1d) = 0 and |p| < a *}.

For p € Q(a), let m(p) denote the order of the zero p.

Theorem 8.31. Let 0 <k < 1. Then there exists a, >0 such that the
Jollowing hold for a > a,:

(i) The zeros p € Q(a) are of the form p = p;;

and |k| <k; ..(a).

(ii) There exist n € N and C > 0 such that, for any two zeros p,, p, €
Q(a) satisfying p, # +p,, we have |p, £ p,| = C/a".

(iii) There exists a subset Q'(a) C Q(a) of cardinality < 2r with the
following property: For any p € Q(a) — Q'(a), p >0 (resp. p < 0), there
exists a unique p' € Q(a), p' <0 (resp. p’' > 0), such that

V) forsome j, 1<j<r,

1+2x

lp+p|<Cla™™,

and m(p) = m(p'), where C > 0 is independent of a.

Proof. Let p € Qa). Then there exist j, 1< j<r,and ke Z,
k| < k (@), such that p = p . Hence, p(J ) regarded as solution of
(8.25), has multiplicity 1 and satlsﬁes (8. 27) This proves (i).

To prove (11), consider two zeros p, p' € Q(a) and suppose that p =

p, p'=pU). I k # £k, it follows from (8.28) that
|p :i:p'| >k :tk’l/a >1/a fora?> a,.

Assume that k = k', B, # B,. If k = k' =0, then p = p' =0

by (8.23). Hence, we may assume that k = k' # 0, so that we have

2ap + B;(p) = 2ap’ + le(p') . Suppose that the corresponding Taylor

rcl%eﬂ‘xcients in (8.23) satisty @, ;=a, ; for /<m-1and a, , #a; ,.
en

00 [o0)
I ! !
2a(p~p)+ ) a; (0 =) =D (@ ,—a; )P
=1 I=m

. ! —-K
Put ¢=a, , —a; , . By assumption, ¢ # 0. Moreover, |p|, |p| < a

This implies
1o = Pl2a + 0(1)) = 9"l + O(@™)|.

Since k' # 0, it follows from (8.28) that |p’| >a! for a> a, , so that

p—p2ca ™4,  axa,.
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Furthermore, by (8.28), we have |p + p'| > a”'. The case where k =
-k, Bj, £ B , can be treated in much the same way. It remains to

consider the case where k' = —k and ﬂj'., = i.e., where p = p,((j)

j’
and p' = pY), k #£0. Then |p—p'| > a™'. If p # —p, there exists

neN such that a, ; an # 0. Otherwise the function (4) is odd implying
0 _

Py’ = —.p_k. Let m € N such that mx > 2n. By assumption, we have
2a(p+p) + Bi(p)+ ﬂ.(p') = 0. We rewrite this as follows:

21+1 12141
p

/’+/’)+Z _121+l )

12p 21+1 121+1
Zaj 2pp PP~ Z a; (P FPT),

I=m+1
which yields
Ip+2'12a+0@™™)) > |a, ,, (0™ + o)+ O@@™).
Since k # 0, we have |p|, |p'| > a~' by (8.28). Hence
o+ 0> |dj,2,,|/azn+l + 0@ > c/a,

which proves (ii). Finally, the first part of (iii) follows from (i) and Lemma
8.29. The multiplicity m(p) of any p € Q(a) equals the number of j’s,
1 < j <r, such that p is a solution of (8.25). This shows immediately
that m(p) = m(p'). q.e.d.

We are now ready to prove our main result concerning the small eigen-
values.

Theorem 8.32. Let 0<x <1 and a>0. Let ,(a) < 4,(@) <--- <
lpa(a) be the nonzero eigenvalues, counted to multiplicity, of D(a), which

satisfy |2;(a)] < a™, and let p(a) < py(a) < --- < p,, (a) run over

the zeros # 0, counted to multiplicity, of det(eZkMS(l) + 1d) satisfying
lpj(a)] < a™*. Then there exist a, > 0 and ¢ > 0, independent of a, such
that, for a>a,, p,=m, and

M’j(a) - pj(a)l < e—Ca, .] =1,--, m,.

Proof. Llet a > a, and let 4, 0 < |i| < a *, be an eigenvalue of
D(a), of multiplicity m(4). It follows from Proposition 8.20 that there
exist k€ Z, 1 < j<r, such that

(8.33) 122a + B,(2) - 27nk| < e,
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Let pf be the unique solution of (8.25). Then (8.33) implies

(8.34) - pfl<e®

If m(4) > 1, there exist pairwise distinct branches f; , --- , ﬂfm(;) such
that (8.33) holds with the same k. Let a, > 0 be chosen according to
Theorem 8.31. Hence we obtain

Lemma 8.35. Let a>ay andlet A, 0 <|i| < a™", be an eigenvalue
- of D(a), of multiplicity m(A). Then there exists a unique p € £(a) such
that |A—p| < e™“ and m(p) > m(d) where m(p) denotes the multiplicity
of the zero p.

By Lemma 8.35, it remains to show that

S omp)= Y m@),

PEQ(a) A

0<|i|<a”"

where A runs over the eigenvalues of D(a), .
Let a>a, and pe Q(a). Let e L_, ||¢|l = 1, such that

(8.36) e PS(A)p = —¢.

Consider the generalized eigensection E(¢, A) attached to ¢. From
(4.20), (8.36) and the definition of S(4), it follows that the constant term
Ey(¢, p) of E(¢, p) satisfies

(8.37) P_(Ey(¢,p,(a,)=0, P, (;—qu(fi” p,(u, °))lu=a) =0.

Let o' € Q(a), p# p'. Choose ¢’ €L, ||#']l=1, such that >’ S(p')¢’
= —¢ . By Green’s formula, we get

/J‘I(E(¢,p,x),E(¢',p',x))dx

a

1 ’ ’
- ;——,;'/M,,{‘DE("””’X)’E("’ %)

- (E(¢’ P X), DE(¢I’ p" x))}dx
1
=—— [ (VE($,p.(a,"), E(4, 0, (a, ")) dy.
pP—p Jy
To compute the right-hand side of (8.38), we need the complete expansion
of E(¢, A) on R* x Y. Note that the section 6(¢, A) occurring in (4.24)
is square integrable and satisfies D@(¢, A) = A0(¢, A). Therefore, it can

(8.38)
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be expanded in terms of the eigensections (4.3). Let A € Z,. Together
with (4.24), we get

(8.39) E(¢, 2) =e (¢~ ivg) + ™ CA)($ — i79)

+ 2 a;(4) { exp(—\/u; ~ Fu)y

u;>0

= A

U _
+ —42—5 exp(— uf - 22u) W op-
.uj -4

Using (4.29), it is easy to see that the coefficients a (A) satisfy 3 ;la; (,1)|2
< C for A € (—py/2, #,/2) and some C > 0. We apply this formula
to compute the right-hand side of (8.38). Because of (8.37), the constant
term makes no contribution and, by Theorem 8.31 (ii), we obtain

(840)  UE($,p), E(@', )y | Ce™, a0

By means of the description of KerD(a), given by Proposition 8.10, one
can show in the same way that

(841)  [{E($,p), Wiy | <Ce™™?, a0,y eKerD(a),.

Now let ¢' € L_, ||¢'|l = 1, be a second solution of (8.36). Let £ > 0
and apply the above method to compute (E(¢, p), E(¢', p+ ih)),, . If
we pass to the limit # — 0, then

(E(¢, p), E(&', Py,
(8.42) =4a($, ¢) — i{C(=p)C'(p)(¢ — ive), &' — ivd)
+0E ™y, a»o0.

The constant in the remainder term is independent of a, p. If ¢ = ¢',
we get a formula for |E($, p)|3, -

Lemma 8.43. Let p € Q(a) be given and suppose that ¢,, ¢, € L_
are two solutions of (8.36). If (¢, ¢,) =0, then

(C(=p)C'(p)(dy ~ ivdy) s §; — iv;) = O.

Proof First, observe that C(p)(d)j — iy¢;) belongs to the (—i)-eigen-
space of y. Therefore, (8.36) can be rewritten as

(844)  Clp)g;—ivg) =—e "¢, +ird), j=0,1,
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and, we have to show that

(8.45) (C'(p)(bg — ivdy)» $, + ivdy) = 0.
Let ¢, € L_, |u| < &, be a smooth one-parameter family of eigenvectors

of S(p + u) with eigenvalues u(u) such that u(0) = —e >**. As above,
this is equivalent to

Clp+u)o, —iveg,) = u(u)é, +ire,).
Differentiating this equality yields
C'(p)(¢g — i79g) = 1 (0)(y + ivy) + 1(0) (B + i¥g) ~ C(p)(g — iy)-
Hence
(C'()(Bo ~ iv8o)> &y + ive) = —e NGy + ivdy, b, + ivd,)
- (¢0 - ly¢o ’ C(_p)(¢l + ly¢1))
Using the functional equation (4.21) and (8.44), we get

C=p)(@, +iv$,) = —e""($, — ir,).
Finally, since ¢,, ¢, € L_, we have

(bo— ivdy, &, — iv,) = (g + ivdy, &, + i)
Combining our results gives (8.45). g.e.d.

Now return to (8.42). Suppose that (¢, ¢') = 0. Then, using Lemma
8.43, we get

(8.46) (E$, p), B, Py, = Ole™"),

Let f € C(R) satisfying 0 < f < 1, f(u) = 1 for u < 1/2and
f(u) =0 for u>1. Put f(u) = f(u/a). We regard f, as a function
on M, in the obvious way. Furthermore, let x, denote the characteristic
function of [0,a4] xY Cc M,. Let p, < p, <--- < p, be the zeros in
Q(a) where each zero is repeated according to its multiaplicity. For each
Jj, 1<j<m,, wepick ¢ ; € L_ with the following properties:

(1) e™°S(p))¢,=—9;.

(2) Whenever p; = p; , = = Pivis Djs Bjrs > ¢;,, form an
orthonormal system of vectors of L_ .
Put

W =S (E(@;, p)) = 2, E(D;, )+ X.E(8;, p;)
and
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From the definition it follows that each f is a smooth section of S over
M, and satisfies ni(ijMa) = 0. Thus y; belongs to the domain of
D(a), . Furthermore, employing (8.40)-(8.42) and (8.46), we obtain that
there exist a,, C, ¢ > 0 such that, for a > a,,

(847) |(Wi: Wj)lsce_ca9 171'..]9 i,j=1,"'7ma’
and )
(8.48) w,, w)| < Ce™ ™, w €KerD(a),, i=1,--,m,.

Let 7, denote the orthogonal projection of L2(M .»S) onto KerD(a), .
Put

¥7]=W]_na¥/]9 j=19"':ma-
Since dim(KerD(a),) is independent of a, it follows from (8.47) and
(8.48) that

(8.49) (@, ) —6,1<Ce ™,  i#j,i,j=1,---,m,, a>0.
By (8.26), we have m, < ra'™ for a > 0 which together with (8.49)
implies that

(8.50) W, - , ¥, arelinearly independent for a > 0.

Now let 0 < ;11 < ;12 <... < ,~1p denote the nonzero eigenvalues, counted

with multiplicity, of" D(a)f which are less than @ 2. Let m = m , and
let k,,---, k, be a permutation of {1,---, m} such that 0 < pil <

piz <-- < pim . By the mini-max principle, we have

2
4. = min max M
LW el g)?
where W runs over all j-dimensional subspaces of dom(D(a),) which
are orthogonal to KerD(a), (cf. [25, p. 82]). Let W, be the subspace of
dom(D(a),) spanned by t/?k1 RN t/‘/kj. By (8.50), dim W, = j for a >
0. Moreover, by construction, W] is orthogonal to KerD(a)
using (8.47), (8.48) and the definition of > We get

(8.51) i <max____”9<">r¢“2
' L ANNMTE

.- Hence,

<P (1+Cre™ )

for some constants C|, ¢, > 0. In particular, this shows that m_ < p,_, so
that in consequence of Lemma 8.35, m, = p,. Combined with Lemma
8.35 this completes the proof.
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Let 0 <k < 1. We can now investigate the behavior of

*® 12 —1?
(8.52) /ﬁz Y Ae Mdt

bt . 4
l4;<a

as t — oo. By Theorem 8.32, we may as well sum over p € Q(a). Let
Q'(a) be defined as in Theorem 8.31(iii). Let p € Q(a) — Q'(a), p>0.
By Theorem 8.31(iii), there exists a unique p’ € Q(a), p' < 0, such that

o+ < Ca (429 Suppose that p > —p’. Then
1/4
o a2 o« et pa 2
p/ et dt+'p// {2t dt=/ e dx
va va p'a‘lt
<Clp+p Ia1/4 < Cla_3/4_2x.

Thus, (8.52) can be estimated by CI#Q(a)ra_3/ 4=2¢ By Theorem 8.31(i),
and (8.26), we have #Q(a) < ra'™*; and (8.49) can be estimated by
C2a1/4_3". Pick x such that 1/12 < k < 1/4. Then (8.49) tends to zero
as g — oo. Together with (7.5), Proposition 7.6 and the final estimate for
(7.13), we have proved that

lim 7(0, D(a),) = n(0, ).

Combined with Proposition 2.16, we get our main result, Theorem 0.1.
We conclude this section by discussing an example—the Dirac operator
in dimension one. Consider the differential operator

D(a) = (—6(;6u 6/06u>

acting in C*([0, a]; C*), a> 0. Then y =(5%4),and C? is equipped
with the standard symplectic structure ®(z, w) = z,w, — z,w, where
z =(zy,2,), w = (w;,w,). Let « € R and consider the complex

line L, C C? spanned by (1, —eia). Then L, , a € R, are Lagrangian
subspaces of C?. Let P be the orthogonal projection of C? onto L,.
Denote by D(a), the operator D(a) with domain

dom D(a), = {g € C*([0, al; C*) | Py(¢(0)) = 0, P,(p(a))=O}.

Then D(a), is symmetric with selfadjoint closure. A direct computation
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shows that the eigenvalues of D(a), are given by
1 «a n a
lk—z(nk—i)—z(k—ﬁ), kelZ.

Put b = /2% and suppose that 0 < b < 1. Then the eta function of
D(a), equals

_(a s [ & 1 _ ] 1
U(S,D(a)a)—(i) {Ilek__—bls Z|k+b|s}'

k=0

It follows from [2, p. 411] that

o

70, D(a),) =2b—1=_—

1(0, D(a),) = 0.

1, 0<a<2n, and
(8.53)

In particular, the eta invariant is independent of a as claimed by Propo-
sition 2.16. Now consider D = D(co) acting in Lz([O, o0); C2) with
domain

dom D = {p € C™([0, o0); C*) | Py(¢(0)) = 0, p(u) = O for u > 0}.

If o=(f,g), f, g€ C”(0, x)), then the boundary conditions mean
that f(0) = g(0). Let & be the closure of D in L?. Then & is
selfadjoint. It is easy to see that the kernel of exp —t< 2 s given by

, 1 e—(u—u')2/4t —u+u' Y 14
k(u,u, 1) = \/?m e—(u+u')2/4t e—(u—u')2/4t >
which implies that tr(D, k(u, u, ),_,) =0. Hence 7(0, Z)=0. From
(8.53) we get '
1(0, D(a)y) =n(0, Z) and 2(0, D(a),) =n(0, Z).

Next we determine the scattering matrix associatedto & . Let ¢, = (1, 0)
and ¢, = (0, 1). Then it is easy to see that the corresponding generalized

eigenfunctions of & are the following:
F(, h,uy=¢ ¢ +e™p, and F($,, 1, u)=e M¢, +e™s,.

Therefore the on-shell scattering matrix C(4): - Chis given by
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Ci) = (‘1) é)

In particular, the *1-eigenspaces of C(0) are equal to L, and L_, re-
spectively. Thus, the possible boundary conditions for which #(0, D(a),)
equals 7(0, &) are determined by the eigenspaces of C(0).

References

[1] M. F. Atiyah, V. K. Patodi & 1. M. Singer, Spectral asymmetry and Riemannian geom-
etry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43-69.

, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos.

Soc. 78 (1975) 405-432.

, Spectral asymmetry and Riemannian geometry. I11, Math. Cambridge Philos. Soc.
79 (1976) 71-99.

[4] H. Baumgirtel, Analytic perturbation theory for matrices and operators, Birkhiuser,
Basel, 1985.

[5] J.-M. Bismut & J. Cheeger, Remarks on the index theorem for families of Dirac oper-
ators on manifolds with boundary, Differential Geometry, A symposium in honor
of Manfredo do Carmo (B. Lawson and K. Tenenblat, eds.), Longman Scientific &
Technical, 1991, 59-83,

[6] T. Branson & P. Gilkey, Residues of the n-function for operators of Dirac type, J. Func-
tional Analysis 108 (1992) 47-87.

[7]1 J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geometry
18 (1983) 575-657.

[8] ——, n-invariants, the adiabatic approximation and conical singularities, J. Differential
Geometry 26 (1987) 175-221.

[9] Y. Colin de Verdiere, Pseudo-Laplacians. 11, Ann. Inst. Fourier (Grenoble) 33 (2) (1983)
87-113.

[10] H. Donnelly, Eigenvalue estimates for certain noncompact manifolds, Michigan Math. J.
31 (1984) 349-357.

[11] R. D. Douglas & K. P. Wojciechowski, Adiabatic limits of the n-invariants. The odd-
dimensional Atiyah-Patodi-Singer problem, Comm. Math. Phys. 142 (1991)
139-168.

[12] P. B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem,
Publish or Perish, Wilmington, DE, 19384.

, The residue of the global eta function at the origin, Advances in Math. 40 (1981)
290-307.

[14] P.B. Gilkey & L. Smith, The eta invariant for a class of elliptic boundary value problems,
Comm. Pure Appl. Math. 36 (1983) 85-132.

[15] M. Gromov & H. B. Lawson, Positive scalar curvature and the Dirac operator on complete
Riemannian manifolds, Inst. Hautes Etudes Sci. Publ. Math. 58 (1983) 83-196.

[16] L. Guillopé, Théorie spectrale de quelques variétés a bouts, Ann. Sci. Ecole Norm. Sup.
(4) 22 (1989) 137-160.

[17] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1980.

[18] , Wave operators and unitary equivalence, Pacific J. Math. 15 (1965) 171-180.

[19] S. Klimek & K. Wojciechowski, n-invariants on manifolds with cylindrical ends, Differ-
ential Geometry Appl. 3 (1993) 191-201.

[20] S. Lang, SL(2, R), Addison-Wesley, Reading, MA, 1975.

[21] M. Lesch & K. P. Wojciechowski, On the n-invariant of generalized Atiyah-Patodi-Singer
boundary value problems, preprint, 1993.

f2]
(3]

[13]




ETA INVARJANTS AND MANIFOLDS WITH BOUNDARY 377

[22] R. Melrose, The Atiyah-Patodi-Singer index theorem, MIT, A. K. Peters, Wellesley, 1993,

[23] W. Miiller, L2-index and resonances, Analysis on Manifolds (Katata 1987), Lecture
Notes in Math., Vol. 1339, Springer, Berlin, 1988, 203-211.

[24] R. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Math. Studies No. 57,
Princeton, NJ, 1965.

[25] M. Reed & B. Simon, Methods of modern mathematical physics, Vol. IV, Academic
Press, New York, 1978.

[26] B. Thaller, The Dirac equation, Texts Monographs Phys., Springer, Berlin, 1992.

MAX-PLANCK-INSTITUT FUR MATHEMATIK





